Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A broad stopband common-mode suppression defected ground structure filter with complementary structure

Zeng Zhi-Bin Yao Yin-Di Zhuang Yi-Qi

Citation:

A broad stopband common-mode suppression defected ground structure filter with complementary structure

Zeng Zhi-Bin, Yao Yin-Di, Zhuang Yi-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A low-cost defected ground structure (DGS) wideband stopband filter adopting complementary structure is proposed, which is designed for common-mode noise suppression in high-speed differential signals. The filter is etched below the low cost FR4 printed circuit board. To avoid stimulating the common-mode noise, the DGS cells on ground planes are kept symmetrical to the central line of the two differential signal lines. Both sides of the filter adopt a symmetric cup-shape DGS structure and the middle of the filter adopts a symmetric umbrella-type structure. All of the DGS structures are complementary, which makes the filter compact and miniaturized. What is more, because the spaces among the three DGS are closer, there exist the mutual inductances among them, which are utilized to achieve a wide stopband filter. The simulated result demonstrates the proposed filter has a wideband bandwidth of 6.8 GHz over 20 dB. In order to analyze the effect of compact structure of the filter, a filter having the same DGS patterns but large spaces among them is compared with it. The simulated result demonstrates that the stopband bandwidth of the compared filter has a wideband bandwidth of 4.4 GHz over 20 dB, of which the bandwidth is about 2.4 GHz less than that of the proposed filter. It is obvious that there exists a mutual inductance in the compact DGS structure common-mode filter, which plays an important role in broadening the bandwidth of the proposed filter. In order to facilitate analysis, an equivalent model of LC circuit is also given. The equivalent parameters of LC can be deduced from the definition of 3 dB cut-off frequency and resonant frequency, of which the values can be obtained by the HFSS simulation. The simulated and measured results show that the differential signal under the DGS filter is nearly intact, and the common-mode noise can be reduced over 20 dB from 4.6 GHz to 11.4 GHz and over 15 dB from 4.3 GHz to 12 GHz, while the area of the filter is only 10 mm by 10 mm. Compared with the periodic DGS at the same suppression depth of common-mode noise over 20 dB, the method has the advantages that surface area is reduced to no more than 30%, and the stopband width is increased by over 50%.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2012ZX03001018-001) and the Fundamental Research Funds for the Central Universities, China (Grant No. JB151109).
    [1]

    Al-Hasan M J, Denidni T A, Sebak A R 2013 IEEE Trans. Antennas Propag. 61 4354

    [2]

    Elena P, Eva R I, Kildal P S 2012 IEEE Microw. Wireless Compon. Lett. 22 129

    [3]

    Kim S H, Lee J Y, Nguyen T T, Jang, J H 2013 IEEE Antennas Wireless Propag. Lett. 12 1468

    [4]

    Jiang D C, Li Y S, Lu J M, Ding T H 2013 J Electron. Inform. Technol. 35 1496 (in Chinese) [蒋冬初, 李玉山, 路建民, 丁同浩 2013 电子与信息学报 35 1496]

    [5]

    Shi L F, Cai C S, Meng C, Cheng L Y 2013 Chin. J. Radio Sci. 28 332 (in Chinese) [史凌峰,蔡成山,孟辰,成立业 2013 电波科学学报 28 332]

    [6]

    Xu H X, Wang G M, Liang J G, Peng Q 2012 Acta Phys. Sin. 61 074101 (in Chinese) [许河秀, 王光明, 梁建刚, 彭清 2012 物理学报 61 074101]

    [7]

    Gao W D, Liu H, Sun R H 2013 J. Shanghai Jiaotong Univ. 47 1109 (in Chinese) [高卫东, 刘汉, 孙荣辉 2013 上海交通大学学报 47 1109]

    [8]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 207301 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 207301]

    [9]

    Ahn D, Park J S, Kim C S, Kim J, Qian Y X, Itoh T 2001 IEEE Trans. Microw. Theory Technol. 49 86

    [10]

    Karmakar N, Roy S M, Balbin I 2006 IEEE Trans. Microw. Theory Technol. 54 2160

    [11]

    Woo D J, Lee T K, Lee J W 2013 IEEE Microw. Wireless Compon. Lett. 23 447

    [12]

    Liu W T, Tsai C H, Han T W, Wu T L 2008 IEEE Microw. Wireless Compon. Lett. 18 248

    [13]

    Yang F X, Tang M, Wu L S, Mao J F 2014 IEEE Electrical Design of Advanced Packaging m& Systems Symposium Bangalore, India, December 14-16, 2014 p129

    [14]

    Lee J K, Kim Y S 2010 IEEE Microw. Wireless Compon. Lett. 20 316

    [15]

    Wu S J, Tsai C H, Wu T L, Itoh T 2009 IEEE Trans. Microw. Theory Technol. 57 848

    [16]

    Kufa M, Raida Z 2013 Elect. Lett. 49 199

    [17]

    Pang Y Y, Feng Z H 2012 Microwave and Millimeter Wave Technology Shenzhen, China, May 5-8, 2012 p1

    [18]

    Song Y H, Yang G M, Wen G Y 2014 IEEE Microw. Wireless Compon. Lett. 24 230

    [19]

    Hong J S G, Lancaster M J 2001 Microstrip Filter for RF/Microwave Applications (New York: Wiley) pp248-255

  • [1]

    Al-Hasan M J, Denidni T A, Sebak A R 2013 IEEE Trans. Antennas Propag. 61 4354

    [2]

    Elena P, Eva R I, Kildal P S 2012 IEEE Microw. Wireless Compon. Lett. 22 129

    [3]

    Kim S H, Lee J Y, Nguyen T T, Jang, J H 2013 IEEE Antennas Wireless Propag. Lett. 12 1468

    [4]

    Jiang D C, Li Y S, Lu J M, Ding T H 2013 J Electron. Inform. Technol. 35 1496 (in Chinese) [蒋冬初, 李玉山, 路建民, 丁同浩 2013 电子与信息学报 35 1496]

    [5]

    Shi L F, Cai C S, Meng C, Cheng L Y 2013 Chin. J. Radio Sci. 28 332 (in Chinese) [史凌峰,蔡成山,孟辰,成立业 2013 电波科学学报 28 332]

    [6]

    Xu H X, Wang G M, Liang J G, Peng Q 2012 Acta Phys. Sin. 61 074101 (in Chinese) [许河秀, 王光明, 梁建刚, 彭清 2012 物理学报 61 074101]

    [7]

    Gao W D, Liu H, Sun R H 2013 J. Shanghai Jiaotong Univ. 47 1109 (in Chinese) [高卫东, 刘汉, 孙荣辉 2013 上海交通大学学报 47 1109]

    [8]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 207301 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 207301]

    [9]

    Ahn D, Park J S, Kim C S, Kim J, Qian Y X, Itoh T 2001 IEEE Trans. Microw. Theory Technol. 49 86

    [10]

    Karmakar N, Roy S M, Balbin I 2006 IEEE Trans. Microw. Theory Technol. 54 2160

    [11]

    Woo D J, Lee T K, Lee J W 2013 IEEE Microw. Wireless Compon. Lett. 23 447

    [12]

    Liu W T, Tsai C H, Han T W, Wu T L 2008 IEEE Microw. Wireless Compon. Lett. 18 248

    [13]

    Yang F X, Tang M, Wu L S, Mao J F 2014 IEEE Electrical Design of Advanced Packaging m& Systems Symposium Bangalore, India, December 14-16, 2014 p129

    [14]

    Lee J K, Kim Y S 2010 IEEE Microw. Wireless Compon. Lett. 20 316

    [15]

    Wu S J, Tsai C H, Wu T L, Itoh T 2009 IEEE Trans. Microw. Theory Technol. 57 848

    [16]

    Kufa M, Raida Z 2013 Elect. Lett. 49 199

    [17]

    Pang Y Y, Feng Z H 2012 Microwave and Millimeter Wave Technology Shenzhen, China, May 5-8, 2012 p1

    [18]

    Song Y H, Yang G M, Wen G Y 2014 IEEE Microw. Wireless Compon. Lett. 24 230

    [19]

    Hong J S G, Lancaster M J 2001 Microstrip Filter for RF/Microwave Applications (New York: Wiley) pp248-255

  • [1] Luo Yu-Xuan, Cheng Yong-Zhi, Chen Fu, Luo Hui, Li Xiang-Cheng. Dual-band filter design based on hourglass-shaped spoof surface plasmon polaritons and interdigital capacitor structure. Acta Physica Sinica, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [2] Chen Xu-Sheng, Li Jiu-Sheng. Tunable terahertz absorber with multi-defect combination embedded VO2 thin film structure. Acta Physica Sinica, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [3] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [4] Li Kun-Ying, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Liu Yi-Ming, Xu Bing-Jie, Wang Yun-Cai. Flat chaos generated by optical feedback multi-mode laser with filter. Acta Physica Sinica, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [5] Wang Fan, Li Yu-Dong, Guo Qi, Wang Bo, Zhang Xing-Yao, Wen Lin, He Cheng-Fa. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors. Acta Physica Sinica, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [6] Yang Yun-Ru, Guan Jian-Fei. Numerical study of plasmonic filter based on metal-insulator-metal waveguide. Acta Physica Sinica, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [7] Lan Feng, Gao Xi, Qi Li-Mei. Terahertz bandpass filter using double-layer reformative complementary frequency selective surface structures. Acta Physica Sinica, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [8] Chen Ming-Hui, Ding Zhi-Hua, Wang Cheng, Song Cheng-Li. Fiber Fabry-Perot tunable filter based Fourier domain mode locking swept laser source. Acta Physica Sinica, 2013, 62(6): 068703. doi: 10.7498/aps.62.068703
    [9] Jiao Jian, Gao Jin-Song, Xu Nian-Xi, Chen Xin. Design and study of the polarization selective surface based on the complementary screens. Acta Physica Sinica, 2013, 62(19): 197303. doi: 10.7498/aps.62.197303
    [10] Sang Tian, Cai Tuo, Liu Fang, Cai Shao-Hong, Zhang Da-Wei. Design and analysis of guided-mode resonance filter containing an absentee layer with an antireflective surface. Acta Physica Sinica, 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [11] Ge Wen-Qi, Chai Lu, Hu Ming-Lie, Wang Qing-Yue, Su Liang-Bi, Li Hong-Jun, Zheng Li-He, Xu Jun. Generation of 190 fs optical pulses from a mode-locked Yb, Na: CaF2 laser. Acta Physica Sinica, 2012, 61(1): 014213. doi: 10.7498/aps.61.014213
    [12] Cui Guang-Bin, Miao Jun-Gang, Zhang Yong-Fang. Design of waveguide array frequency selective surface filter in sub-millimeter wave band. Acta Physica Sinica, 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [13] Liu Qi-Hai, Hu Dong-Sheng, Yin Xiao-Gang, Wang Yan-Qing. Defect mode in one-dimensional photonic crystal consisting of single-negative materials with an impurity layer. Acta Physica Sinica, 2011, 60(9): 094101. doi: 10.7498/aps.60.094101
    [14] Ma Jian-Yong, Liu Shi-Jie, Wei Chao-Yang, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zhen-Xiu. Design and analysis of double layer resonant grating filters in the visible spectral region. Acta Physica Sinica, 2008, 57(7): 4195-4201. doi: 10.7498/aps.57.4195
    [15] Ma Jian-Yong, Liu Shi-Jie, Wei Chao-Yang, Xu Cheng, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Design of reflection resonant grating filters. Acta Physica Sinica, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [16] Wen Xiao-Wen, Li Guo-Jun, Qiu Gao-Xin, Li Yong-Ping, Ding Lei, Sui Zhan. One-dimensional magneto optical multi-layer film isolator with multi-defect. Acta Physica Sinica, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [17] Zhao Li , Chen Geng-Hua, Zhang Li-Hua, Huang Xu-Guang, Zhai Guang-Jie, Li Jun-Wen, Tang Yu-Lin, Feng Ji. Applications of improved complementary pair adaptive noise cancellation to MCG analysis*. Acta Physica Sinica, 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [18] Cao Hui, Sun Jun-Qiang, Zhang Xin-Liang, Xiao Ling-Yan, Huang De-Xiu. A novel design methodology for superstructure fiber Bragg grating comb-filter. Acta Physica Sinica, 2004, 53(9): 3077-3082. doi: 10.7498/aps.53.3077
    [19] Liu Hai-Wen, Sun Xiao-Wei, Li Zheng-Fan, Qian Rong, Zhou Min. A low-pass filter of wide stopband with a novel dual-layer fractal photonic band gap structure. Acta Physica Sinica, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [20] Liu Li, Deng Xiao-Qiang, Wang Gui-Ying, Xu Zhi-Zhan. . Acta Physica Sinica, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
Metrics
  • Abstract views:  4900
  • PDF Downloads:  208
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2014
  • Accepted Date:  12 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回