Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Focusing performance of hard X-ray single Kinoform lens

Chen Zhi Xu Liang Chen Rong-Chang Du Guo-Hao Deng Biao Xie Hong-Lan Xiao Ti-Qiao

Citation:

Focusing performance of hard X-ray single Kinoform lens

Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nowadays, X-ray nanoprobe plays an important role in many research fields, ranging from materials science to geophysics and environmental science, to biophysics and protein crystallography. Refractive lenses, mirrors, and Laue lenses, can all focus X-rays into a spot with a size of less than 50 nm. To design a refractive lens at fixed wavelengths, absorption in the lens material can be significantly reduced by removing 2πup phase-shifting regions. This permits short focal length devices to be fabricated with small radii of curvatures at the lens apex. This feature allows one to obtain a high efficiency X-ray focusing. The reduced absorption loss also enables optics with a larger aperture, and hence improving the resolution for focusing. Since the single Kinoform lens can focus hard X-ray into a spot on a nanoscale efficiently, it has very important application prospect in X-ray nano-microscopy and nano-spectroscopy. We present a theoretical analysis of optical properties of the single Kinoform lens. Using Fermat's principle of least time, an exact solution of the single Kinoform lens figure is derived. The X-ray diffraction theory is reviewed. The complex amplitude transmittance function of the X-ray single Kinoform lens is derived. According to Fourier optics and optical diffraction theory, we set up the physical model of X-ray single Kinoform lens focusing. Employing this physical model, we study how the focusing performance of hard X-ray single Kinoform lens is influenced by the material, the photon energy, the number of steps and the vertex radius of curvature. We find that diamond single Kinoform lens can achieve a smaller focusing beam size with higher intensity gain than Al and Si single Kinoform lens. The single Kinoform lens designed at a certain photon energy can also focus other photon energies with different lateral beam sizes, axial beam sizes, intensity gains and focusing distances. The numbers of steps of a single Kinoform lens can be lessened with the thickness of step increasing, while the single Kinoform lens keeps good focusing performance. To improve the focusing performance further, reducing the vertex radius of curvature is proposed. Following these rules, a single Kinoform lens is optimally designed to focus 30 keV hard X-ray down to a lateral size of 14 nm (full-width at half-maximum, FWHM) and an axial size of 62 μm (FWHM) with an intensity gain of four orders of magnitude and transmittance of 30%.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 81430087, 11275257, 11375257), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1232205), the National Basic Research Program of China (Grant No. 2010CB834301), and the External Co-operation Research Project, China (Grant No. GJHZ1303).
    [1]

    Vartanyants I A, Singer A 2010 New J. Phys. 12 035004

    [2]

    Yabashi M, Tono K, Mimura H, Matsuyama S, Yamauchi K, Tanaka T, Tanaka H, Tamasaku K, Ohashi H, Goto S, Ishikawa T 2014 J. Synchrotron Rad. 21 976

    [3]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202]

    [4]

    Ice G E, Budai J D, Pang J W L 2011 Science 334 1234

    [5]

    Sakdinawat A, Attwood D 2010 Nat. Photon. 4 840

    [6]

    Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L, Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese) [刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔 2012 物理学报 61 078701]

    [7]

    Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q 2012 Acta Phys. Sin. 61 054205 (in Chinese) [王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔 2012 物理学报 61 054205]

    [8]

    Döring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T, Krebs H U 2013 Opt. Express 21 19311

    [9]

    Huang X, Yan H, Nazaretski E, Conley R, Bouet N, Zhou J, Lauer K, Li L, Eom D, Legnini D, Harder R, Robinson I K, Chu Y S 2013 Sci. Rep. 3 3562

    [10]

    Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Nat. Phys. 6 122

    [11]

    Schroer C G, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Küuchler M 2005 Appl. Phys. Lett. 87 124103

    [12]

    Kang H C, Yan H, Winarski R P, Holt M V, Maser J, Liu C, Conley R, Vogt S, Macrander A T, Stephenson G B 2008 Appl. Phys. Lett. 92 221114

    [13]

    Snigirev A, Kohn V, Snigireva I, Lengeler B 1996 Nature 384 49

    [14]

    Chen Z, Xie H L, Deng B, Du G H, Jiang H D, Xiao T Q 2014 Chin. Opt. Lett. 12 123401

    [15]

    Snigirev A, Snigireva I 2008 C. R. Physique 9 507

    [16]

    Elleaume P 1998 J. Synchrotron Rad. 5 1

    [17]

    Kohmura Y, Awaji M, Suzuki Y, Ishikawa T, Dudchik Y I, Kolchevsky N N, Komarov F F 1999 Rev. Sci. Instrum. 70 4161

    [18]

    Lengeler B, Schroer C G, Richwin M, Tummler J, Drakopoulos M, Snigirev A, Snigireva I 1999 Appl. Phys. Lett. 74 3924

    [19]

    Schroer C G,Gunzler T F, Benner B, Kuhlmann M, Tummler J, Lengeler B, Rau C, Weitkamp T, Snigirev A, Snigireva I 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 467 966

    [20]

    Aristov V, Grigoricv M, Kuznetsov S, Shabclnikov L, Yunkin V, Hoffmann M, Vogcs E 2000 Opt. Commun. 177 33

    [21]

    Schroer C G, Kuhlmann M, Hunger U T, Günzler T F, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici A S, Snigirev A, Snigireva I, Schug C, Schroder W H 2003 Appl. Phys. Lett. 82 1485

    [22]

    Evans-Lutterodt K, Stein A, Ablett J M, Bozovic N, Taylor A, Tennant D M 2007 Phys. Rev. Lett. 99 134801

    [23]

    Alianelli L, Sawhney K J S, Barrett R, Pape I, Malik A, Wilson M C 2011 Opt. Express 19 11120

    [24]

    Kohn V G 2012 J. Synchrotron Rad. 19 84

    [25]

    Sánchez del Río M 2013 J. Phys.: Conf. Ser. 425 162003

    [26]

    Canestrari N, Chubar O, Reininger R 2014 J. Synchrotron Rad. 21 1110

    [27]

    Born M, Wolf E 1980 Principles of Optics (Oxford: Pergamon Press) p376

    [28]

    Sales T R M, Morris G M 1997 Appl. Opt. 36 253

    [29]

    Buralli D A, Morris G M, Rogers J R 1989 Appl. Opt. 28 976

    [30]

    Lund M W 1997 J. X-Ray Sci. Technol. 7 265

  • [1]

    Vartanyants I A, Singer A 2010 New J. Phys. 12 035004

    [2]

    Yabashi M, Tono K, Mimura H, Matsuyama S, Yamauchi K, Tanaka T, Tanaka H, Tamasaku K, Ohashi H, Goto S, Ishikawa T 2014 J. Synchrotron Rad. 21 976

    [3]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202]

    [4]

    Ice G E, Budai J D, Pang J W L 2011 Science 334 1234

    [5]

    Sakdinawat A, Attwood D 2010 Nat. Photon. 4 840

    [6]

    Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L, Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese) [刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔 2012 物理学报 61 078701]

    [7]

    Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q 2012 Acta Phys. Sin. 61 054205 (in Chinese) [王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔 2012 物理学报 61 054205]

    [8]

    Döring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T, Krebs H U 2013 Opt. Express 21 19311

    [9]

    Huang X, Yan H, Nazaretski E, Conley R, Bouet N, Zhou J, Lauer K, Li L, Eom D, Legnini D, Harder R, Robinson I K, Chu Y S 2013 Sci. Rep. 3 3562

    [10]

    Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Nat. Phys. 6 122

    [11]

    Schroer C G, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Küuchler M 2005 Appl. Phys. Lett. 87 124103

    [12]

    Kang H C, Yan H, Winarski R P, Holt M V, Maser J, Liu C, Conley R, Vogt S, Macrander A T, Stephenson G B 2008 Appl. Phys. Lett. 92 221114

    [13]

    Snigirev A, Kohn V, Snigireva I, Lengeler B 1996 Nature 384 49

    [14]

    Chen Z, Xie H L, Deng B, Du G H, Jiang H D, Xiao T Q 2014 Chin. Opt. Lett. 12 123401

    [15]

    Snigirev A, Snigireva I 2008 C. R. Physique 9 507

    [16]

    Elleaume P 1998 J. Synchrotron Rad. 5 1

    [17]

    Kohmura Y, Awaji M, Suzuki Y, Ishikawa T, Dudchik Y I, Kolchevsky N N, Komarov F F 1999 Rev. Sci. Instrum. 70 4161

    [18]

    Lengeler B, Schroer C G, Richwin M, Tummler J, Drakopoulos M, Snigirev A, Snigireva I 1999 Appl. Phys. Lett. 74 3924

    [19]

    Schroer C G,Gunzler T F, Benner B, Kuhlmann M, Tummler J, Lengeler B, Rau C, Weitkamp T, Snigirev A, Snigireva I 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 467 966

    [20]

    Aristov V, Grigoricv M, Kuznetsov S, Shabclnikov L, Yunkin V, Hoffmann M, Vogcs E 2000 Opt. Commun. 177 33

    [21]

    Schroer C G, Kuhlmann M, Hunger U T, Günzler T F, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici A S, Snigirev A, Snigireva I, Schug C, Schroder W H 2003 Appl. Phys. Lett. 82 1485

    [22]

    Evans-Lutterodt K, Stein A, Ablett J M, Bozovic N, Taylor A, Tennant D M 2007 Phys. Rev. Lett. 99 134801

    [23]

    Alianelli L, Sawhney K J S, Barrett R, Pape I, Malik A, Wilson M C 2011 Opt. Express 19 11120

    [24]

    Kohn V G 2012 J. Synchrotron Rad. 19 84

    [25]

    Sánchez del Río M 2013 J. Phys.: Conf. Ser. 425 162003

    [26]

    Canestrari N, Chubar O, Reininger R 2014 J. Synchrotron Rad. 21 1110

    [27]

    Born M, Wolf E 1980 Principles of Optics (Oxford: Pergamon Press) p376

    [28]

    Sales T R M, Morris G M 1997 Appl. Opt. 36 253

    [29]

    Buralli D A, Morris G M, Rogers J R 1989 Appl. Opt. 28 976

    [30]

    Lund M W 1997 J. X-Ray Sci. Technol. 7 265

  • [1] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [3] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [4] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [5] Zhang Cheng, Fang Long-Jie, Zhu Jian-Hua, Zuo Hao-Yi, Gao Fu-Hua, Pang Lin. Four-element division algorithm for focusing light through scattering medium. Acta Physica Sinica, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [6] Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou. InSb based subwavelength array for terahertz wave focusing. Acta Physica Sinica, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [7] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [8] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [9] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [10] Yu Bo, Chen Bo-Lun, Hou Li-Fei, Su Ming, Huang Tian-Xuan, Liu Shen-Ye. Hard X-ray measurement for indirect-driven imploding by chemical vapor deposited diamond detectors. Acta Physica Sinica, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [11] Chang Qiang, Yang Yan-Fang, He Ying, Liu Hai-Gang, Liu Jian. Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system. Acta Physica Sinica, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [12] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao. Eliminating the center spot of bottle beam generated by axicon-lens system. Acta Physica Sinica, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [13] Wang Zheng, Gao Chun-Qing, Xin Jing-Tao. Focusing properties of the high order vector beam by a high numerical aperture lens. Acta Physica Sinica, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [14] Yu Yong-Jiang, Chen Jian-Nong, Yan Jin-Liang, Wang Fei-Fei. Longitudinally polarized subwavelength beam generated by focusing radially modulated Bessel-Gaussian beam. Acta Physica Sinica, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [15] Zhao Xue-Feng, Li San-Wei, Jiang Gang, Wang Chuan-Ke, Li Zhi-Chao, Hu Feng, Li Chao-Guang. Monte Carlo simulation of hard X-ray producedby suprathermal electrons interactionwith golden hohlraum targets. Acta Physica Sinica, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [16] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [17] Li Min, Zhang Zhi-You, Shi Sha, Du Jing-Lei. Optimization and analysis of the structural parameters of subwavelength metal focusing lens. Acta Physica Sinica, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [18] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [19] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [20] D.C.GAO, A.POGANY, A.W.STEVENSON, T.GUREYEV, S.W.WILKINS, MAI ZHEN-HONG. HARD X-RAY PHASE-CONTRAST IMAGING. Acta Physica Sinica, 2000, 49(12): 2357-2368. doi: 10.7498/aps.49.2357
Metrics
  • Abstract views:  5951
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2015
  • Accepted Date:  25 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回