Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal

Meng Xiang-Hao Liu Hua-Gang Huang Jian-Hong Dai Shu-Tao Deng Jing Ruan Kai-Ming Chen Jin-Ming Lin Wen-Xiong

Citation:

Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal

Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Tunable coherent deep ultraviolet (DUV) light sources, especially ultrashort pulse DUV lasers have great applications in the fields of time-resolved, material processing, spectroscopy, laser spectroscopy and laser fusion. In the UV region, the best choice of generating the laser pulses in the femtosecond or picosecond regime is the frequency up-conversation technique based on second order nonlinearities. Over the past three decades, quite a lot of nonlinear crystals, such as LiB3O5, βup-BaB2O4, KBe2BO3F2 and Ba1-xB2-y- zO4SixAlyGaz have been developed and employed for generating the femtosecond pulses in the blue, ultraviolet, and even the deep-ultraviolet region. A tunable deep ultraviolet femtosecond laser is experimentally studied based on the new nonlinear crystal Ba1-xB2-y-zO4SixAlyGaz It is a kind of low-temperature phase barium metaborate single crystal belonging to a trigonal system, doped with one or more elements selected from Si, Al and Ga. As an optimized β-BaB2O4 crystal, Ba1-xB2-y-zO4SixAlyGaz completely overcomes the shortcomings of deliquescence compared with β-BaB2O4, and its nonlinear efficiency and optical damage threshold have also been greatly improved. Using two crystals as second harmonic generation is to compensate for the spatial walk-off effect and the light path walk-off due to refraction effect The optical axis of the second Ba1-xB2-y-zO4SixAlyGaz is twice the phase matching angle with respect to the first one. In a femtosecond regime, short pulse provides high efficient frequency conversation due to their high peak powers, but the group velocity mismatch is a cognitive factor to limit conversion efficiency. It is obvious that after the frequency doubling, the second harmonic pulse and fundamental pulse separate from each other. The second harmonic pulse lags behind the fundamental pulse as they propagate through the crystal and the second harmonic pulse is broadened into a longer pulse duration than the fundamental pulse The method to compensate for the group velocity mismatch is to adjust the path length between the fundamental and second harmonic pulse by means of time delay line. It consists of beam splitters and mirrors. Tunable deep ultraviolet pulse within a wavelength range from 192.5 to 210 nm is produced, with a maximum average power of 5.8 mW, under a 2.78 W fundamental power. The average power of second harmonic, third harmonic and fourth harmonic are 1.28 W, 194 mW and 5.8 mW at the fundamental wavelength of 800 nm, corresponding to conversion efficiencies of 46.14%, 15.16% and 3% from the previous stage, respectively. The duration of the third harmonic pulse is 640.4 fs at 266.7 nm as measured by the cross-correlation technique.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11327804), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. yz201341), the Key Program of Industrial Science and Technology Plan of Fujian Province, China (Grant No. 2012H0050), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205134), and the Chunmiao Project of Haixi Institute of Chinese Academy of Sciences (Grant No. CMZX-2014-002).
    [1]

    Chen C T, Lin Z S 2004 J. Synth. Crys. 33 455 (in Chinese) [陈创天, 林哲帅 2004 人工晶体学报 33 455]

    [2]

    Chen C T, Liu L J 2007 J. Chin. Ceram. Soc. 35 1 (in Chinese) [陈创天, 刘丽娟 2007 硅酸盐学报 35 1]

    [3]

    Gao Z Y, Zhu J F, Tian W L, Wang J L, Wang Q, Zhang Z G, Wei Z Y, Yu H H, Zhang H J, Wang J Y 2014 Chin. Phys. B 23 054207

    [4]

    He J L, Lu X Q, Jia Y L 2000 Acta Phys. Sin. 49 2106 (in Chinese) [何京良, 卢兴强, 贾玉磊 2000 物理学报 49 2106]

    [5]

    Dubietis A, Tamošauskas G, Varanavičius A 2000 Opt. Lett. 25 1116

    [6]

    Liu H, Gong M L 2009 Acta Phys. Sin. 58 5443 (in Chinese) [刘欢, 巩马理 2009 物理学报 58 5443]

    [7]

    Nebel A, Beigang R 1991 Opt. Lett. 16 1729

    [8]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 3979 (in Chinese) [刘华刚, 胡明列, 刘博文, 宋有建, 柴璐, 王清月 2010 物理学报 59 3979]

    [9]

    Wang G, Wang X, Zhou Y, Li C, Zhu Y, Xu Z, Chen C 2008 Appl. Opt. 47 486

    [10]

    Chen C, Togashi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z, Wang J 2002 Opt. Lett. 27 637

    [11]

    Chen C, Xu Z, Deng D, Zhang J, Wong G, Wu B 1996 Appl. Phys. Lett. 68 2930

    [12]

    Rotermund F, Petrov V 1998 Opt. Lett. 23 1040

    [13]

    Kanai T, Kanda T, Sekikawa T 2004 J. Opt. Soc. Am. B 21 370

    [14]

    Chen C Z 2011 US patent 2 322 697 [2011-07-14]

    [15]

    Wang R, Teng H, Wang N, Han H N, Wang Z H, Wei Z Y, Hong M C, Lin W X 2014 Opt. Lett. 39 2105

    [16]

    Gao L L, Tan H M, Chen Y X 2003 Laser Technology 3 245 (in Chinese) [高兰兰,檀慧明, 陈颖新 2003 激光技术 3 245]

    [17]

    Gehr R J, Kimmel R W, Smith A V 1998 Opt. Lett. 23 1298

    [18]

    Huang J, Chang Y, Shen T, Yang Y 2008 Opt. Commun. 281 5244

    [19]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C 2014 Phys. Rev. B 89 115123

  • [1]

    Chen C T, Lin Z S 2004 J. Synth. Crys. 33 455 (in Chinese) [陈创天, 林哲帅 2004 人工晶体学报 33 455]

    [2]

    Chen C T, Liu L J 2007 J. Chin. Ceram. Soc. 35 1 (in Chinese) [陈创天, 刘丽娟 2007 硅酸盐学报 35 1]

    [3]

    Gao Z Y, Zhu J F, Tian W L, Wang J L, Wang Q, Zhang Z G, Wei Z Y, Yu H H, Zhang H J, Wang J Y 2014 Chin. Phys. B 23 054207

    [4]

    He J L, Lu X Q, Jia Y L 2000 Acta Phys. Sin. 49 2106 (in Chinese) [何京良, 卢兴强, 贾玉磊 2000 物理学报 49 2106]

    [5]

    Dubietis A, Tamošauskas G, Varanavičius A 2000 Opt. Lett. 25 1116

    [6]

    Liu H, Gong M L 2009 Acta Phys. Sin. 58 5443 (in Chinese) [刘欢, 巩马理 2009 物理学报 58 5443]

    [7]

    Nebel A, Beigang R 1991 Opt. Lett. 16 1729

    [8]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 3979 (in Chinese) [刘华刚, 胡明列, 刘博文, 宋有建, 柴璐, 王清月 2010 物理学报 59 3979]

    [9]

    Wang G, Wang X, Zhou Y, Li C, Zhu Y, Xu Z, Chen C 2008 Appl. Opt. 47 486

    [10]

    Chen C, Togashi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z, Wang J 2002 Opt. Lett. 27 637

    [11]

    Chen C, Xu Z, Deng D, Zhang J, Wong G, Wu B 1996 Appl. Phys. Lett. 68 2930

    [12]

    Rotermund F, Petrov V 1998 Opt. Lett. 23 1040

    [13]

    Kanai T, Kanda T, Sekikawa T 2004 J. Opt. Soc. Am. B 21 370

    [14]

    Chen C Z 2011 US patent 2 322 697 [2011-07-14]

    [15]

    Wang R, Teng H, Wang N, Han H N, Wang Z H, Wei Z Y, Hong M C, Lin W X 2014 Opt. Lett. 39 2105

    [16]

    Gao L L, Tan H M, Chen Y X 2003 Laser Technology 3 245 (in Chinese) [高兰兰,檀慧明, 陈颖新 2003 激光技术 3 245]

    [17]

    Gehr R J, Kimmel R W, Smith A V 1998 Opt. Lett. 23 1298

    [18]

    Huang J, Chang Y, Shen T, Yang Y 2008 Opt. Commun. 281 5244

    [19]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C 2014 Phys. Rev. B 89 115123

  • [1] Cheng Jia, Wu Ya-Dong, Yan Ri, Peng Xue-Fang, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Tunable ultraviolet laser based on intracavity third harmonic generation of external cavity surface emitting laser. Acta Physica Sinica, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] Wang Wu-Yue, Yu Yu, Li Yun-Fei, Wang Gong, Li Kai, Wang Zhi-Yong, Song Chang-Yu, Li Sen-Sen, Li Yu-Hai, Liu Tong-Yu, Yan Xiu-Sheng, Wang Yu-Lei, Lü Zhi-Wei. Ridge-type suspended waveguide Brillouin laser. Acta Physica Sinica, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [4] Ridge Type Suspended Waveguide Brillouin Laser(Optoelectronic Technology and Application ). Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211539
    [5] Zhang Ruo-Yu, Li Pei-Li. Acousto-optic tunable flat top filter based on one-dimensional coupled-cavity photonic crystals. Acta Physica Sinica, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [6] Wang Zhi-Peng, Guan Bao-Lu, Zhang Feng, Yang Jia-Wei. Liquid crystal tunable vertical cavity surface emission laser with inner cavity sub-wavelength grating. Acta Physica Sinica, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [7] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [8] Cao Hui, Song You-Jian, Yu Jia-He, Shi Hao-Sen, Hu Ming-Lie, Wang Qing-Yue. Singular spectrum analysis for precision improvement in dual-comb laser ranging. Acta Physica Sinica, 2018, 67(1): 010601. doi: 10.7498/aps.67.20171922
    [9] Xiong Meng-Jie, Li Jin-Yan, Luo Xing, Shen Xiang, Peng Jing-Gang, Li Hai-Qing. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber. Acta Physica Sinica, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [10] Ren Feng, Yin Sheng-Yi, Lu Zhi-Peng, Li Yang, Wang Yu, Zhang Shen-Jin, Yang Feng, Wei Dong. Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research. Acta Physica Sinica, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [11] Qin Peng, Chen Wei, Song You-Jian, Hu Ming-Lie, Chai Lu, Wang Ching-Yue. Long range absolute distance measurement based on femtosecond laser balanced optical cross-correlation. Acta Physica Sinica, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [12] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [13] Zhou Ke-Yu, Ye Hui, Zhen Hong-Yu, Yin Yi, Shen Wei-Dong. Study of tunable Fabry-Perot filter based on piezoelectric polymer film. Acta Physica Sinica, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] Wang Zhen-Dong, Liang Bian, Liu Zhong-Bo, Fan Xi-Jun. Propagation of femtosecond chirped Gaussian pulse in dense three-level Λ-type atomic medium. Acta Physica Sinica, 2010, 59(10): 7041-7049. doi: 10.7498/aps.59.7041
    [15] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [16] Tian Jin-Rong, Han Hai-Nian, Zhao Yan-Ying, Wang Peng, Zhang Wei, Wei Zhi-Yi. Ultra-broad-bandwidth femtosecond-pulse generation by chirped mirrors for dispersion compensation. Acta Physica Sinica, 2006, 55(9): 4725-4728. doi: 10.7498/aps.55.4725
    [17] Wang Yi-Shan, Liu Hong-Jun, Cheng Zhao, Zhao Wei, Wang Yong-Gang, Ma Xiao-Yu, Zhang Zhi-Gang. Self-starting mode-locked femtosecond Ti:sapphire laser using saturable Bragg reflector(SBR). Acta Physica Sinica, 2005, 54(11): 5184-5188. doi: 10.7498/aps.54.5184
    [18] Han Hai-Nian, Wei Zhi-Yi, Zhang Jun, Nie Yu-Xin. Measurements of carrier-envelope-offset in the femtosecond Ti:sapphire laser. Acta Physica Sinica, 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
    [19] Sun Jing-Hua, Zhang Ruo-Bing, Hu You-Fang, Zhang Zhi-Gang, Wang Qing-Yue. . Acta Physica Sinica, 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [20] Dong Xin-Yong, Zhao Chun-Liu, Guan Bai-Ou, Tan Hua-Yao, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Output characteristics of tunable fiber ring-laser:modeling and experimentation. Acta Physica Sinica, 2002, 51(12): 2750-2755. doi: 10.7498/aps.51.2750
Metrics
  • Abstract views:  4964
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2015
  • Accepted Date:  05 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回