Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Cu doped ZnO diluted magnetic semiconductors on magnetic and electrical performance from simulation and calculation

Hou Qing-Yu Xu Zhen-Chao Wu Yun Zhao Er-Jun

Citation:

Effects of Cu doped ZnO diluted magnetic semiconductors on magnetic and electrical performance from simulation and calculation

Hou Qing-Yu, Xu Zhen-Chao, Wu Yun, Zhao Er-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • At present, the effects on the magnetic and electrical properties of Cu heavily doped ZnO with the mole amount of Cu being in a range of 0.02778-0.16667 are rarely studied by first-principles. Therefore two models for Zn1-xCuxO supercells (x=0.02778, 0.03125) are set up to calculate the band structures and density of states by using the plane-wave ultrasoft pseudopotential based on the spin-polarized density functional theory. The calculation results indicate that the doped systems are degenerate semiconductors, and they are semimetal diluted magnetic semiconductors. As the doping amount of Cu increases, the relative concentration of free holes increases, the effective mass of holes decreases, the electron mobility decreases and the electronic conductivity increases. These results are validated again by the analysis of ionization energy and Bohr radius, and they are consistent with the experimental data. As the doping amount of single-Cu increases from 0.02778 to 0.0625, the volume of doping system decreases, the total energy increases, the stability decreases, the formation energy increases and doping is more difficult. As the same concentration and the different doping modes for double-Cu doped, the magnetic moment of doping system first increases and then decreases with the increasing of spacing of Cu-Cu; while the bonds of nearest Cu–O–Cu lie along the a-axis or b-axis, the magnetic moment of doping system disappears; while the bonds of nearest Cu–O–Cu lie along the c-axis, the Curie temperature reaches a temperature above room temperature. As the doping amount of double-Cu increases from 0.0625 to 0.16667, the total magnetic moment of doping system first increases and then decreases, while the bonds of nearest Cu–O–Cu lie along the c-axis. The calculation results are consistent with the experimental data.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 21261013), the "Spring Sunshine" Project of Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Lu J, Li Z, Yin G L, Ge M Y, He D N, Wang H 2014 J. Appl. Phys. 116 123102

    [2]

    Liu W J, Tang X D, Tang Z, Chu F H, Zeng T, Tang N Y 2014 J. Alloy. Compd. 615 740

    [3]

    Wu Z F, Cheng K, Zhang F, Guan R F, Wu X M, Zhuge L J 2014 J. Alloy. Compd. 615 521

    [4]

    Li W C, Zuo Y L, Liu X H, Wei Q Q, Zhou X Y, Yao D S 2015 Chin. Phys. B 24 047503

    [5]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104

    [6]

    Muthukumaran S, Gopalakrishnan R 2012 Opt. Mater. 34 1946

    [7]

    Kim C O, Kim S, Oh H T, Choi S H, Shon Y, Lee S, Hwang H N, Hwang C C 2010 Physica B 405 4678

    [8]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403

    [9]

    Wan Z Z, Wan X L, Liu J P, Wang Q B 2014 J. Supercond. Nov. Magn. 27 1945

    [10]

    ElAmiri A, Lassri H, Abid M, Hlil E K 2014 Bull. Mater. Sci. 37 805

    [11]

    Gong J J, Chen J P, Zhang F, Wu H, Qin M H, Zeng M, Gao X S, Liu J M 2015 Chin. Phys. B 24 037505

    [12]

    Wang F, Lin W, Wang L C, Ge Y M, Zhang X T, Lin H R, Huang W W, Huang J Q 2014 Acta Phys. Sin. 63 157502 (in Chinese) [王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦 2014 物理学报 63 157502]

    [13]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [14]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [15]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514

    [16]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517

    [17]

    Ando K, Saito H, Jin Z 2001 J. Appl. Phys. 89 7284

    [18]

    Wang X F, Xu J B, Cheung W Y, An J, Ke N 2007 Appl. Phys. Lett. 90 212502

    [19]

    Seehra M S, Dutta P, Singh V, Zhang Y, Wender I

    [20]

    Sudakar C, Padmanabhan K, Naik R, Lawes G, Kirby B J, Kumar S, Naik V M 2008 Appl. Phys. Lett. 93 042502

    [21]

    Tiwari A, Snure M, Kumar D, Abiade J T 2008 Appl. Phys. Lett. 92 062509

    [22]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943

    [23]

    Sung N E, Kang S W, Shin H J, Lee H K, Lee I J

    [24]

    Tian Y, Li Y, He M, Putra I A, Peng H, Yao B, Wu T 2011 Appl. Phys. Lett. 98 162503

    [25]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342

    [26]

    Singhal S, Kaur J, Namgyal T, Sharma R 2012 Physica B 407 1223

    [27]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [30]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [31]

    Lin Q B, Li Q R, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 物理学报 55 873]

    [32]

    Ye L H, Freeman A J, Delley B

    [33]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [34]

    Buchholz D B, Chang R P H, Song J Y, Ketterson J B 2005 Appl. Phys. Lett. 87 082504

    [35]

    Pawar R C, Choi D H, Lee J S, Lee C S 2015 Mater. Chem. Phys. 151 167

    [36]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [37]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社)第103页]

    [38]

    Schleife A, Fuchs F, Furthmüller J 2006 J. Phys. Rev. B 73 245212

    [39]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [40]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials Beijing China, September 20-25, 2004 pp81-84

  • [1]

    Lu J, Li Z, Yin G L, Ge M Y, He D N, Wang H 2014 J. Appl. Phys. 116 123102

    [2]

    Liu W J, Tang X D, Tang Z, Chu F H, Zeng T, Tang N Y 2014 J. Alloy. Compd. 615 740

    [3]

    Wu Z F, Cheng K, Zhang F, Guan R F, Wu X M, Zhuge L J 2014 J. Alloy. Compd. 615 521

    [4]

    Li W C, Zuo Y L, Liu X H, Wei Q Q, Zhou X Y, Yao D S 2015 Chin. Phys. B 24 047503

    [5]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104

    [6]

    Muthukumaran S, Gopalakrishnan R 2012 Opt. Mater. 34 1946

    [7]

    Kim C O, Kim S, Oh H T, Choi S H, Shon Y, Lee S, Hwang H N, Hwang C C 2010 Physica B 405 4678

    [8]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403

    [9]

    Wan Z Z, Wan X L, Liu J P, Wang Q B 2014 J. Supercond. Nov. Magn. 27 1945

    [10]

    ElAmiri A, Lassri H, Abid M, Hlil E K 2014 Bull. Mater. Sci. 37 805

    [11]

    Gong J J, Chen J P, Zhang F, Wu H, Qin M H, Zeng M, Gao X S, Liu J M 2015 Chin. Phys. B 24 037505

    [12]

    Wang F, Lin W, Wang L C, Ge Y M, Zhang X T, Lin H R, Huang W W, Huang J Q 2014 Acta Phys. Sin. 63 157502 (in Chinese) [王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦 2014 物理学报 63 157502]

    [13]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [14]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [15]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514

    [16]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517

    [17]

    Ando K, Saito H, Jin Z 2001 J. Appl. Phys. 89 7284

    [18]

    Wang X F, Xu J B, Cheung W Y, An J, Ke N 2007 Appl. Phys. Lett. 90 212502

    [19]

    Seehra M S, Dutta P, Singh V, Zhang Y, Wender I

    [20]

    Sudakar C, Padmanabhan K, Naik R, Lawes G, Kirby B J, Kumar S, Naik V M 2008 Appl. Phys. Lett. 93 042502

    [21]

    Tiwari A, Snure M, Kumar D, Abiade J T 2008 Appl. Phys. Lett. 92 062509

    [22]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943

    [23]

    Sung N E, Kang S W, Shin H J, Lee H K, Lee I J

    [24]

    Tian Y, Li Y, He M, Putra I A, Peng H, Yao B, Wu T 2011 Appl. Phys. Lett. 98 162503

    [25]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342

    [26]

    Singhal S, Kaur J, Namgyal T, Sharma R 2012 Physica B 407 1223

    [27]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [30]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [31]

    Lin Q B, Li Q R, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 物理学报 55 873]

    [32]

    Ye L H, Freeman A J, Delley B

    [33]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [34]

    Buchholz D B, Chang R P H, Song J Y, Ketterson J B 2005 Appl. Phys. Lett. 87 082504

    [35]

    Pawar R C, Choi D H, Lee J S, Lee C S 2015 Mater. Chem. Phys. 151 167

    [36]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [37]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社)第103页]

    [38]

    Schleife A, Fuchs F, Furthmüller J 2006 J. Phys. Rev. B 73 245212

    [39]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [40]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials Beijing China, September 20-25, 2004 pp81-84

  • [1] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study. Acta Physica Sinica, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [3] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [5] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [6] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] Hou Yu-Hua, Huang You-Lin, Liu Zhong-Wu, Zeng De-Chang. Theoretical study on the influence of rare earth doping on the electronic structure and magnetic properties of cobalt ferrite. Acta Physica Sinica, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [8] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [9] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [11] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [12] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [13] Hou Qing-Yu, Wu Yun, Zhao Chun-Wang. Simulation and calculation of the Mott phase transition and magnetroelectric performance of Magnli phase titanium suboxides. Acta Physica Sinica, 2013, 62(23): 237102. doi: 10.7498/aps.62.237102
    [14] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [17] Yang Yin-Tang, Wu Jun, Cai Yu-Rong, Ding Rui-Xue, Song Jiu-Xu, Shi Li-Chun. First principles investigation on conductivity mechanism of p-type K:ZnO. Acta Physica Sinica, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [18] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
Metrics
  • Abstract views:  4338
  • PDF Downloads:  342
  • Cited By: 0
Publishing process
  • Received Date:  22 February 2015
  • Accepted Date:  14 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回