Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shot noise characteristics of Majorana fermions in transport through double quantum dots

Zhou Yang Guo Jian-Hong

Citation:

Shot noise characteristics of Majorana fermions in transport through double quantum dots

Zhou Yang, Guo Jian-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Majorana fermions are their own antiparticles, which play an important role in fault-tolerant topological quantum computation. Recently, the search for Majorana fermions in condensed matter physics, is attracting a great deal of attention as quasiparticles emerge. In this paper we consider a specific model consisting of double quantum dots and a tunnel-coupled semiconductor nanowire on an s-wave superconductor, since the nanowire may support Majorana fermions under appropriate conditions. We study the electron transport through the double quantum dots by using the particle-number resolved master equation. We pay particular attention to the effects of Majorana's dynamics on the current fluctuation (shot noise). It is shown that the current and the shot noise measurement can be used to distinguish Majorana fermions from the usual resonant-tunneling levels. When there exist Majorana fermions coupling to the double quantum dots, a difference between the steady-state source and drain currents depends on the asymmetry of electron tunneling rates. The asymmetric behaviors of the currents can reveal the essential features of the Majorana fermion. Moreover, the dynamics of Majorana coherent oscillations between the semiconductor nanowire and the double quantum dots is revealed in the shot noise, via spectral dips together with a pronounced zero-frequency noise enhancement effect. We find, on the one hand, that the peak of the zero-frequency noise becomes a dip in the case of weak coupling between double quantum dots and the nanowire; on the other hand, for the strong coupling the dip of the zero-frequency noise becomes even further deep with side dips towards high frequency regimes. Furthermore, the dip of the zero-frequency noise disappears and a zero-frequency noise peak gradually develops when the dot-electrode coupling is tuned by gate voltage. As a result, the combination of the current and the shot noise through double quantum dots allows one to probe the presence of Majorana fermions.
    • Funds: Project supported by the Scientific Research Foundation of Beijing Education Commission, China (Grant No. KM201210028008).
    [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083

    [3]

    Kitaev A Y 2001 Phys.-Uspekhi 44 131

    [4]

    Das Sarma S, Nayak C, Tewari S 2006 Phys. Rev. B 73 220502(R)

    [5]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [6]

    Zhang C W, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001

    [11]

    Volovik G E 1999 JETP Lett. 70 609

    [12]

    San-Jose P, Cayao J, Prada E, Aguado R 2014 arXiv:1409.7306v2 [cond-mat]

    [13]

    Franz M 2013 Nature Nanotech. 8 149

    [14]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [15]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nature Phys. 8 887

    [16]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [17]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nature Phys. 7 412

    [18]

    Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511

    [19]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [20]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308(R)

    [21]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [22]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [23]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [24]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [25]

    Hützen R, Zazunov A, Braunecker B, Levy Yeyati A, Egger R 2012 Phys. Rev. Lett. 109 166403

    [26]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [27]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

  • [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083

    [3]

    Kitaev A Y 2001 Phys.-Uspekhi 44 131

    [4]

    Das Sarma S, Nayak C, Tewari S 2006 Phys. Rev. B 73 220502(R)

    [5]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [6]

    Zhang C W, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001

    [11]

    Volovik G E 1999 JETP Lett. 70 609

    [12]

    San-Jose P, Cayao J, Prada E, Aguado R 2014 arXiv:1409.7306v2 [cond-mat]

    [13]

    Franz M 2013 Nature Nanotech. 8 149

    [14]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [15]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nature Phys. 8 887

    [16]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [17]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nature Phys. 7 412

    [18]

    Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511

    [19]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [20]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308(R)

    [21]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [22]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [23]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [24]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [25]

    Hützen R, Zazunov A, Braunecker B, Levy Yeyati A, Egger R 2012 Phys. Rev. Lett. 109 166403

    [26]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [27]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

  • [1] Guo Jia-Ming, Xue Xun. Quantum scattering of fermion by gravitational field with Kerr metric. Acta Physica Sinica, 2022, 71(21): 210401. doi: 10.7498/aps.71.20220876
    [2] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [3] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [4] Wu Jing-Nan, Xu Zhi-Hao, Lu Zhan-Peng, Zhang Yun-Bo. Topological quantum phase transitions in one-dimensional p-wave superconductors with modulated chemical potentials. Acta Physica Sinica, 2020, 69(7): 070302. doi: 10.7498/aps.69.20191868
    [5] Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures. Acta Physica Sinica, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [6] Yan Zhi-Meng, Wang Jing, Guo Jian-Hong. Low-bias oscillations of shot noise as signatures of Majorana zero modes. Acta Physica Sinica, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [7] Wu Hai-Na, Sun Xue, Gong Wei-Jiang, Yi Guang-Yu. Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system. Acta Physica Sinica, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [8] Jia Xiao-Fei, Du Lei, Tang Dong-He, Wang Ting-Lan, Chen Wen-Hao. Research on shot noise suppression in quasi-ballistic transport nano-mOSFET. Acta Physica Sinica, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [9] Ju Xin, Guo Jian-Hong. Influence of interdot-coupling on differentialconductance for a triple quantum dot. Acta Physica Sinica, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [10] Tang Dong-He, Du Lei, Wang Ting-Lan, Chen Hua, Chen Wen-Hao. Qualitative analysis of excess noise in nanoscale MOSFET. Acta Physica Sinica, 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [11] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [12] Liang Zhi-Peng, Dong Zheng-Chao. Shot noise in the semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [13] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] Chen Hua, Du Lei, Zhuang Yi-Qi, Niu Wen-Juan. Relation between charge shot noise and spin polarization governed by Rashba spin orbit interaction. Acta Physica Sinica, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [15] Chen Hua, Du Lei, Zhuang Yi-Qi. Monte Carlo simulation of shot noise in the coherent and mesoscopic system. Acta Physica Sinica, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [16] An Xing-Tao, Li Yu-Xian, Liu Jian-Jun. Noise in mesoscopic physics. Acta Physica Sinica, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [17] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [18] Deng Yu-Xiang, Yan Xiao-Hong, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [19] Zhang Zhi-Yong, Wang Tai-Hong. Luttinger parameter of carbon nanotubes investigated by shot noise experiment. Acta Physica Sinica, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
Metrics
  • Abstract views:  5678
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2014
  • Accepted Date:  17 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回