Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET

Liu Chang Lu Ji-Wu Wu Wang-Ran Tang Xiao-Yu Zhang Rui Yu Wen-Jie Wang Xi Zhao Yi

Citation:

Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET

Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the continued device scaling and the introduction of new device structures, MOSFET reliability phenomena arising from the hot carrier injection (HCI) stress have received extensive attention from both the academia and the industry community. In this work, the degradations of ultra-scaled silicon on insulator (SOI) MOSFETs under the HCI stress are investigated on devices of different gate lengths (L=30-150 nm). Our experimental data demonstrate that the time evolutions of the threshold voltage change (Vth) under the HCI stress for different gate length devices are the same, and the magnitude of Vth reduces for the shorter devices. The degradation of the device under the HCI stress should be due to both the channel hot carrier (CHC) effect and the bias temperature instability (BTI) effect. The distribution and magnitude of the electric field along the MOSFET's channel are analyzed. It is confirmed that besides the well-known CHC effect in the depletion region close to the drain side, a strong BTI effect co-exists in the channel close to the source side. This degradation mechanism is different from the conventional HCI stress. With the gate length decreasing, the contribution of the aforementioned BTI effect becomes larger, and it dominates in the degradation. One feature of the BTI effects is that the corresponding degradation is small when the gate length is short. This is consistent with our experimental result that the change of Vth is small for the device of short gate length under the accelerated HCI stress. The time evolution of Vth can be described by the equation Vth=A•tn, where A is a constant, t is the stress time, and n is the power law exponent obtained by the curve fitting. In this study, the power law exponent n of pMOSFET is larger than that of nMOSFET. This experimental fact can lead to the point that the BTI effect exists during the HCI stress because the BTI effect in ultra-scaled pMOSFETs is more significant than that in nMOSFETs. The stress-recover experiments of the HCI stress on MOSFTTs show larger recovery in device of shorter gate length. It is found that the ratio of the recovery to the total degradation in the 30 nm gate-length device is almost twice as large as that in the 150 nm device. The degradation from the CHC effect has no recovery, and the larger recovery in the shorter-channel device implies the larger component of the BTI degradation. Another intriguing fact is that our experimental result on SOI MOSFET is inconsistent with the recently reported result on FinFET. We argue that the reported stronger HCI degradation in FinFET may not be ascribed only to the stronger electric field in the shorter channel, but also to the fact that the FinFET' channel is three-dimensionally surrounded by the gate dielectric. This kind of three-dimensional structure significantly increases the chance for electrons or holes to be injected into the dielectric layer. Therefore the HCI reliability of planar SOI MOSFETs may be better than that of FinFETs at the same level of gate length. In conclusion, the BTI effect is an important source of the degradation during the HCI stress in ultra-short-channel device, and it is no more negligible in analyzing the underlying physical mechanism.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00607), the National Natural Science Foundation of China (Grant No. 61376097), the Natural Science Foundation Zhejiang Province of China (Grant No. LR14F040001), and the Open Project of State Key Laboratory of Functional Materials for Informatics, China (Grant No. SKL201304).
    [1]

    Liu S E, Wang J S, Lu Y R, Huang D S, Huang C F, Hsieh W H, Lee J H, Tsai Y S, Shih J R, Lee Y H, Wu K 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 p4A.4.1

    [2]

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003 (in Chinese) [赵毅, 万星拱 2006 物理学报 55 3003]

    [3]

    Liang B, Chen J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [4]

    Chen J J, Chen S M, Liang B, He Y B, Chi Y Q, Deng K F 2011 Chin. Phys. B 20 114220

    [5]

    Ma X H, Cao Y R, Hao Y, Zhang Y 2011 Chin. Phys. B 20 037305

    [6]

    Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H, Hao Y 2013 Chin. Phys. B 22 047304

    [7]

    Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

    [8]

    Miura Y, Matukura Y 1966 Jpn. J. Appl. Phys. 5 180

    [9]

    Ning T H, Cook P W, Dennard R H, Osburn C M, Schuster S E, Yu H N 1979 IEEE Trans. Electron Dev. 26 346

    [10]

    Amat E, Kauerauf T, Rodriguez R, Nafria M, Aymerich X, Degraeve R, Groeseneken G 2013 Microelectron. Eng. 103 144

    [11]

    Franco J, Kaczer B, Eneman G, Roussel P, Cho M, Mitard J, Witters L, Hoffmann T Y, Groeseneken G, Crupi F, Grasser T 2011 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 10-14, 2011 p6A.4.1

    [12]

    Ramey S, Hicks J, Liyanage L S, Novak S 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 pXT.2.1

    [13]

    Ramey S, Ashutosh A, Auth C, Clifford J, Hattendorf M, Hicks J, James R, Rahman A, Sharma V, Amour St A, Wiegand C 2013 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 14-18, 2013 p4C.5.1

    [14]

    Takeda E, Suzuki N 1983 IEEE Electron Dev. Lett. 4 111

    [15]

    Duan F, Ioannou D 1996 SOI Conference, 1996 Proceedings, 1996, IEEE International p18

    [16]

    Doyle B S, Mistry K R, Faricelli J 1997 IEEE Electron Dev. Lett. 18 51

    [17]

    Amat E, Kauerauf T, Degraeve R, Rodriguez R, Nafria M, Aymerich X, Groeseneken G 2009 IEEE Trans. Electron Dev. 9 454

    [18]

    Angot D, Huard V, Federspiel X, Cacho F, Bravaix A 2013 IEEE International Reliability Physics Symposium Anaheim, CA, United States, April 14-18,2013 p5D.2.1

    [19]

    Liao J C, Fang Y K, Hou Y T, Hung C L, Hsu P F, Lin K C, Huang K T, Lee T L, Liang M S 2008 Appl. Phys. Lett. 93 092101

    [20]

    Alam M, Mahapatra S 2005 Microelectron. Reliab. 45 71

  • [1]

    Liu S E, Wang J S, Lu Y R, Huang D S, Huang C F, Hsieh W H, Lee J H, Tsai Y S, Shih J R, Lee Y H, Wu K 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 p4A.4.1

    [2]

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003 (in Chinese) [赵毅, 万星拱 2006 物理学报 55 3003]

    [3]

    Liang B, Chen J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [4]

    Chen J J, Chen S M, Liang B, He Y B, Chi Y Q, Deng K F 2011 Chin. Phys. B 20 114220

    [5]

    Ma X H, Cao Y R, Hao Y, Zhang Y 2011 Chin. Phys. B 20 037305

    [6]

    Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H, Hao Y 2013 Chin. Phys. B 22 047304

    [7]

    Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

    [8]

    Miura Y, Matukura Y 1966 Jpn. J. Appl. Phys. 5 180

    [9]

    Ning T H, Cook P W, Dennard R H, Osburn C M, Schuster S E, Yu H N 1979 IEEE Trans. Electron Dev. 26 346

    [10]

    Amat E, Kauerauf T, Rodriguez R, Nafria M, Aymerich X, Degraeve R, Groeseneken G 2013 Microelectron. Eng. 103 144

    [11]

    Franco J, Kaczer B, Eneman G, Roussel P, Cho M, Mitard J, Witters L, Hoffmann T Y, Groeseneken G, Crupi F, Grasser T 2011 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 10-14, 2011 p6A.4.1

    [12]

    Ramey S, Hicks J, Liyanage L S, Novak S 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 pXT.2.1

    [13]

    Ramey S, Ashutosh A, Auth C, Clifford J, Hattendorf M, Hicks J, James R, Rahman A, Sharma V, Amour St A, Wiegand C 2013 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 14-18, 2013 p4C.5.1

    [14]

    Takeda E, Suzuki N 1983 IEEE Electron Dev. Lett. 4 111

    [15]

    Duan F, Ioannou D 1996 SOI Conference, 1996 Proceedings, 1996, IEEE International p18

    [16]

    Doyle B S, Mistry K R, Faricelli J 1997 IEEE Electron Dev. Lett. 18 51

    [17]

    Amat E, Kauerauf T, Degraeve R, Rodriguez R, Nafria M, Aymerich X, Groeseneken G 2009 IEEE Trans. Electron Dev. 9 454

    [18]

    Angot D, Huard V, Federspiel X, Cacho F, Bravaix A 2013 IEEE International Reliability Physics Symposium Anaheim, CA, United States, April 14-18,2013 p5D.2.1

    [19]

    Liao J C, Fang Y K, Hou Y T, Hung C L, Hsu P F, Lin K C, Huang K T, Lee T L, Liang M S 2008 Appl. Phys. Lett. 93 092101

    [20]

    Alam M, Mahapatra S 2005 Microelectron. Reliab. 45 71

  • [1] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [6] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] Zhao Yi, Li Jun-Kang, Zheng Ze-Jie. Progress of the study on carrier scattering mechanisms of silicon/germanium field effect transistors. Acta Physica Sinica, 2019, 68(16): 167301. doi: 10.7498/aps.68.20191146
    [8] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [9] Wei Zheng, Wang Qin-Qin, Guo Yu-Tuo, Li Jia-Wei, Shi Dong-Xia, Zhang Guang-Yu. Research progress of high-quality monolayer MoS2 films. Acta Physica Sinica, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [10] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [12] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [13] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [14] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [15] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [16] Luo Yang, Wang Ya-Nan. Physical hardware trojan failure analysis and detection method. Acta Physica Sinica, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [17] Liu Hong-Xia, Wang Zhi, Zhuo Qing-Qing, Wang Qian-Qiong. Influence of channel length on PD SOI PMOS devices under total dose irradiation. Acta Physica Sinica, 2014, 63(1): 016102. doi: 10.7498/aps.63.016102
    [18] Liu Hong-Xia, Yin Xiang-Kun, Liu Bing-Jie, Hao Yue. Threshold voltage analytic model for strained SiGe-on-insulator p-channel metal-oxide-semiconductor-field-effect-transistor. Acta Physica Sinica, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [19] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
Metrics
  • Abstract views:  6519
  • PDF Downloads:  347
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2015
  • Accepted Date:  23 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回