Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone

Dong Gang Liu Dang Shi Tao Yang Yin-Tang

Citation:

Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone

Dong Gang, Liu Dang, Shi Tao, Yang Yin-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Effects of thermal stress induced by multiple through silicon vias (TSVs) on mobility and keep out zone (KOZ) are mainly discussed in this paper. It is found that the angle and pitch between TSVs have a great effect on the carrier mobility and KOZ. In this paper, the device channel direction is set along [100]. And two types of KOZ are presented, namely the variations of electron mobility are 5% and 10% respectively. As for the two TSVs, their KOZ sizes change significantly with the angles between TSVs which change from zero to π/4, and the area of a KOZ is the minimum when the angle is π/4. But the zone for device placement is irregular, which is difficult for agreement. The area of a KOZ is the maximum when the angle is zero, and it is easy to make arrangement as the space for device distribution is regular. Based on these analyses, the effects of pitch between TSVs are presented. When the angle is zero, the area of KOZ decreases as the pitch increases and tends to be the same as that of a single TSV. For example, the KOZ, in which the variations of electron mobility are 5% and 10%, will reduce to 8.4 μm and 5.1 μm as the pitch increases to 20 μm, which is close to that of the single TSV. But when the angle is π/4, the KOZ with an electron mobility 5% increases from 5.2 to 6.4 μm as the pitch increases and tends to be the same as that of a single TSV at last. The KOZ with an electron mobility 10% will increase from 4.2 to 4.5 μm. In addition, the above analyses can be extended to the KOE of four TSVs, a more representative pattern. And two kinds of TSV displacement style including “square” and "diamond" TSV patterns are also discussed, the impact of pitch for these two patterns are also given in this paper. For the “square” TSV pattern, the KOZ decreases as the pitch increases. Under this condition, the devices can only be placed in a small square region surrounded by TSVs, but the region is regular, which is beneficial for device arranging. While for the "diamond" TSV pattern, the KOZ increases as the pitch increases. Under this condition, the area for device placement is larger than the “square” TSV pattern, but the region is irregular as it is divided into long narrow parts, which is hard for device placement.
      Corresponding author: Dong Gang, gdong@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61334003).
    [1]

    Sai M P D, Shang Y H, Tan C S, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1734

    [2]

    Dong G, Yang Y, Chai C C, Yang Y T 2010 Chin. Phys. B 19 110202

    [3]

    Lee Y J, Lim S K 2011 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 30 1635

    [4]

    Qian L B, Zhu Z M, Xia Y S, Ding R X, Yang Y T 2014 Chin. Phys. B 23 038402

    [5]

    Wang F, Zhu Z, Yang Y, Liu X, Ding R 2013 IEICE Electron. Express 10 20130666

    [6]

    Qian L B, Zhu Z M, Yang Y T 2012 Acta Phys. Sin. 61 068001 (in Chinese) [钱利波, 朱樟明, 杨银堂 2012 物理学报 61 068001]

    [7]

    Weerasekera R, Li H Y, Yi L W, Sanming H, Shi J, Minkyu J, Teo K H 2013 IEEE Electron Device Lett. 34 18

    [8]

    Che F X, Li H Y, Zhang X W, Gao S, Teo K H 2012 IEEE Trans. Compon. Packag. Manufact. Tech. 2 944

    [9]

    Jung M, Mitra J, Pan D Z, Lim S K 2011 IEEE Design Automation Conference New York, USA, June 5-9, 2011 p188

    [10]

    Udupa A, Subbarayan G, Koh C K 2012 Microelectron. Reliab. 53 63

    [11]

    Ryu S K, Lu K H, Zhang X, Im J H, Ho P S, Huang R 2011 IEEE Trans. Device Mater. Rel. 11 35

    [12]

    Tsai M Y, Huang P S, Huang C Y, Jao H, Huang B, Wu B, Lin Y Y, Liao W, Huang L, Shih S, Lin J P 2013 IEEE Trans. Electron Devices 60 2331

    [13]

    Selvanayagam C, Zhang X W, Rajoo R, Pinjala D 2011 IEEE Trans. Compon. Packag. Manufact. Tech. 1 1328

    [14]

    Marella S K, Kumar S K, Sapatnekar S S 2012 IEEE ACM Int Conf Comput Aided Des (ICCAD), Nov 5-8, 2012 p317

    [15]

    Chan Y S, Zhang X W 2014 IEEE Trans. Compon. Packag. Manufact. Tech. 4 1010

    [16]

    Kuo C W, Tsai H Y 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System San Diego, CA, May30-June1, 2012 p202

    [17]

    Lee H M, Liu E X, Samudra G S, Li E P 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium Taipei, China, December 9-11, 2012 p189

    [18]

    Zou Q, Zhang T, Kursun E, Xie Y 2013 Date conference and exhibition Grenoble, France, March 18-22, 2013 p1255

    [19]

    Yang J S, Athikulwongse K, Lee Y J, Lim S K, Pan D Z 2010 47th ACM/IEEE Design Automation Conference(DAC), June 13-18, 2010 p803

    [20]

    Mercha A, Van D P G, Moroz V, Wolf D 2010 IEEE International Electron Devices Meeting(IEDM), San Francisco, CA, Dec 6-8, 2010 p2.2.1

    [21]

    Chen C F 2014 IEEE 64th Electronic Components and Technology Conference(ECTC) Orlando, FL, May 27-30, 2014 p2020

    [22]

    Van der P G, Limaye P, Mercha A, Oprins H, Torregiani C, Thijs S, Linten D, Stucchi M, Guruprasad K, Velenis D, Shinichi D, Cherman V, Vandevelde B, Simons V, De W I, Labie R, Perry D, Bronckers S, Minas N, Cupac M, Ruythooren W, Van O J, Phommahaxay A, de Potter de ten Broeck M, Opdebeeck A, Rakowski M, De W B, Dehan M, Nelis M, Agarwal R, Dehaene W, Travaly Y, Marchal P, Beyne E 2010 Dig Tech Pap IEEE Int Solid State Circuits Conf (ISSCC) San Francisco, CA, Feb 1-7, 2010 p148

    [23]

    Sumi, Chikayoshi 2006 IEEE Trans Ultrason Ferro electr Freq Control 53 2416

    [24]

    Li Y, Chang W Y, Zuo K W, Wang J, Yu D, Boning D 2012 13th International Symposium on Quality Electronic Design, Santa Clara, CA, March 19-21, 2012 p216

    [25]

    Li Y, Pan D Z 2013 50th IEEE Design Automation Conference, Austin, USA, May 29-June 7, 2013 p1

    [26]

    Jung M, Pan D M, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1694

    [27]

    Lim D F, Leong K C 2012 IEEE International 3D Systems Intergration Conference, Osaka, Jan 31-Feb 2, 2012 p1

    [28]

    Ryu S K, Lu K H, Jiang T F, Im J H, Huang H, Ho P S 2012 IEEE Trans. Device Mater. Reliab. 12 255

  • [1]

    Sai M P D, Shang Y H, Tan C S, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1734

    [2]

    Dong G, Yang Y, Chai C C, Yang Y T 2010 Chin. Phys. B 19 110202

    [3]

    Lee Y J, Lim S K 2011 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 30 1635

    [4]

    Qian L B, Zhu Z M, Xia Y S, Ding R X, Yang Y T 2014 Chin. Phys. B 23 038402

    [5]

    Wang F, Zhu Z, Yang Y, Liu X, Ding R 2013 IEICE Electron. Express 10 20130666

    [6]

    Qian L B, Zhu Z M, Yang Y T 2012 Acta Phys. Sin. 61 068001 (in Chinese) [钱利波, 朱樟明, 杨银堂 2012 物理学报 61 068001]

    [7]

    Weerasekera R, Li H Y, Yi L W, Sanming H, Shi J, Minkyu J, Teo K H 2013 IEEE Electron Device Lett. 34 18

    [8]

    Che F X, Li H Y, Zhang X W, Gao S, Teo K H 2012 IEEE Trans. Compon. Packag. Manufact. Tech. 2 944

    [9]

    Jung M, Mitra J, Pan D Z, Lim S K 2011 IEEE Design Automation Conference New York, USA, June 5-9, 2011 p188

    [10]

    Udupa A, Subbarayan G, Koh C K 2012 Microelectron. Reliab. 53 63

    [11]

    Ryu S K, Lu K H, Zhang X, Im J H, Ho P S, Huang R 2011 IEEE Trans. Device Mater. Rel. 11 35

    [12]

    Tsai M Y, Huang P S, Huang C Y, Jao H, Huang B, Wu B, Lin Y Y, Liao W, Huang L, Shih S, Lin J P 2013 IEEE Trans. Electron Devices 60 2331

    [13]

    Selvanayagam C, Zhang X W, Rajoo R, Pinjala D 2011 IEEE Trans. Compon. Packag. Manufact. Tech. 1 1328

    [14]

    Marella S K, Kumar S K, Sapatnekar S S 2012 IEEE ACM Int Conf Comput Aided Des (ICCAD), Nov 5-8, 2012 p317

    [15]

    Chan Y S, Zhang X W 2014 IEEE Trans. Compon. Packag. Manufact. Tech. 4 1010

    [16]

    Kuo C W, Tsai H Y 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System San Diego, CA, May30-June1, 2012 p202

    [17]

    Lee H M, Liu E X, Samudra G S, Li E P 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium Taipei, China, December 9-11, 2012 p189

    [18]

    Zou Q, Zhang T, Kursun E, Xie Y 2013 Date conference and exhibition Grenoble, France, March 18-22, 2013 p1255

    [19]

    Yang J S, Athikulwongse K, Lee Y J, Lim S K, Pan D Z 2010 47th ACM/IEEE Design Automation Conference(DAC), June 13-18, 2010 p803

    [20]

    Mercha A, Van D P G, Moroz V, Wolf D 2010 IEEE International Electron Devices Meeting(IEDM), San Francisco, CA, Dec 6-8, 2010 p2.2.1

    [21]

    Chen C F 2014 IEEE 64th Electronic Components and Technology Conference(ECTC) Orlando, FL, May 27-30, 2014 p2020

    [22]

    Van der P G, Limaye P, Mercha A, Oprins H, Torregiani C, Thijs S, Linten D, Stucchi M, Guruprasad K, Velenis D, Shinichi D, Cherman V, Vandevelde B, Simons V, De W I, Labie R, Perry D, Bronckers S, Minas N, Cupac M, Ruythooren W, Van O J, Phommahaxay A, de Potter de ten Broeck M, Opdebeeck A, Rakowski M, De W B, Dehan M, Nelis M, Agarwal R, Dehaene W, Travaly Y, Marchal P, Beyne E 2010 Dig Tech Pap IEEE Int Solid State Circuits Conf (ISSCC) San Francisco, CA, Feb 1-7, 2010 p148

    [23]

    Sumi, Chikayoshi 2006 IEEE Trans Ultrason Ferro electr Freq Control 53 2416

    [24]

    Li Y, Chang W Y, Zuo K W, Wang J, Yu D, Boning D 2012 13th International Symposium on Quality Electronic Design, Santa Clara, CA, March 19-21, 2012 p216

    [25]

    Li Y, Pan D Z 2013 50th IEEE Design Automation Conference, Austin, USA, May 29-June 7, 2013 p1

    [26]

    Jung M, Pan D M, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1694

    [27]

    Lim D F, Leong K C 2012 IEEE International 3D Systems Intergration Conference, Osaka, Jan 31-Feb 2, 2012 p1

    [28]

    Ryu S K, Lu K H, Jiang T F, Im J H, Huang H, Ho P S 2012 IEEE Trans. Device Mater. Reliab. 12 255

  • [1] Huang Kun, Wang Teng-Fei, Yao Ji. Nonlinear plate theory of single-layered MoS2 with thermal effect. Acta Physica Sinica, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [2] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [3] Dong Gang, Wu Wen-Shan, Yang Yin-Tang. Stack-through silicon via dynamic power consumption optimization in three-dimensional integrated circuit. Acta Physica Sinica, 2015, 64(2): 026601. doi: 10.7498/aps.64.026601
    [4] Zhang Chao-Yu, Xiong Chuan-Bing, Tang Ying-Wen, Huang Bin-Bin, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of micro zone luminescent properties and stress of GaN-based light emitting diode film grown on patterned silicon substrate, induced by the removal of the substrate and AlN buffer layer. Acta Physica Sinica, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [5] Shi Lei, Feng Shi-Wei, Shi Bang-Bing, Yan Xin, Zhang Ya-Min. Degradation induced by voltage and current for AlGaN/GaN high-electron mobility transistor under on-state stress. Acta Physica Sinica, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [6] Wei Zhi, Jin Guang-Yong, Peng Bo, Zhang Xi-He, Tan Yong. Supercontinuum generation in photonic crystal fiber and tapered single-mode fiber. Acta Physica Sinica, 2014, 63(19): 194205. doi: 10.7498/aps.63.194205
    [7] Yu Yao, Zhang Jing-Si, Chen Dai-Dai, Guo Rui-Qian, Gu Zhi-Hua. Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD. Acta Physica Sinica, 2013, 62(13): 138501. doi: 10.7498/aps.62.138501
    [8] Qian Li-Bo, Zhu Zhang-Ming, Yang Yin-Tang. Through-silicon-via-aware interconnect prediction model for 3D integrated circuirt. Acta Physica Sinica, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [9] Yang Hong-Dao, Li Xiao-Hong, Li Guo-Qiang, Yuan Chun-Hua, Tang Duo-Chang, Xu Qin, Qiu Rong, Wang Jun-Bo. Silicon surface microstructures created by 1064 nm Nd∶YAG nanosecond laser. Acta Physica Sinica, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [10] Zhu Zhang-Ming, Zuo Ping, Yang Yin-Tang. An analytical thermal model for 3D integrated circuit considering through silicon via. Acta Physica Sinica, 2011, 60(11): 118001. doi: 10.7498/aps.60.118001
    [11] Cen Zhao-Feng, Li Xiao-Tong. Light transmission in thermal stress-induced birefringent medium. Acta Physica Sinica, 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [12] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [13] Wu Zhen-Yu, Yang Yin-Tang, Chai Chang-Chun, Li Yue-Jin, Wang Jia-You, Liu Bin. The effect of via size on the stress migration of Cu interconnects. Acta Physica Sinica, 2008, 57(6): 3730-3734. doi: 10.7498/aps.57.3730
    [14] Chen Wei-Lan, Gu Pei-Fu, Wang Ying, Zhang Yue-Guang, Liu Xu. Analysis of the thermal stress in infrared films. Acta Physica Sinica, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [15] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [16] HUANG JING-YUN, YE ZHI-ZHEN, QUE DUAN-LIN. CALCULATION OF CRITICAL LAYER THICKNESS BY TAKING INTO ACCOUNT THE THERMAL STRAIN IN Si1-xGex /Si STRAIN LAYER HETEROSTRUCTURES. Acta Physica Sinica, 1997, 46(10): 2010-2014. doi: 10.7498/aps.46.2010
    [17] GU SHAO-TING, ZHANG GUO-XUAN, HUANG GUO-SONG. THERMAL STRESS IN SLAB LASERS. Acta Physica Sinica, 1991, 40(3): 399-406. doi: 10.7498/aps.40.399
    [18] ZHOU FENG, ZHANG GUO-XUAN, HUANG GUO-SONG, WANG ZHI-JIANG. THERMAL STRESSES IN HOLLOW CYLINDER LASERS. Acta Physica Sinica, 1989, 38(2): 247-255. doi: 10.7498/aps.38.247
    [19] ZHOU BING-LIN, CHEN ZHENG-XIU. ON THE LOW MOBILITY OF GaAs. Acta Physica Sinica, 1985, 34(4): 537-541. doi: 10.7498/aps.34.537
    [20] TU XIANG-ZHENG. REDUCTION OF DISLOCATIONS IN LPE LAYERS DUE TO THE ACTION OF THERMAL STRESSES. Acta Physica Sinica, 1983, 32(3): 315-324. doi: 10.7498/aps.32.315
Metrics
  • Abstract views:  4637
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2015
  • Accepted Date:  13 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回