Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic analysis of stable wetting states and wetting transition of micro/nanoscale structured surface

Wu Bing-Bing Wu Hua-Ping Zhang Zheng Dong Chen-Chen Chai Guo-Zhong

Citation:

Thermodynamic analysis of stable wetting states and wetting transition of micro/nanoscale structured surface

Wu Bing-Bing, Wu Hua-Ping, Zhang Zheng, Dong Chen-Chen, Chai Guo-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Superhydrophobicity of biological surfaces with micro/nanoscale hierarchical roughness has recently been given great attention and widely reported in many experimental studies due to the unique wettability. For example, the dual-scale structure of the lotus leaf not only shows high contact angle and low contact angle hysteresis but also presents good stability and mechanical properties. Though lots of experimental studies on the wettability of artificial hierarchical rough surface have been carried out, a thorough analysis on the contribution of micro- and nano-scaled roughness to the metastable wetting states and their transition is still lack. In this paper, a thermodynamic approach is applied to analyze all the wetting states (including four stable wetting states and five transition states) of a water droplet on a surface with micro/nanoscale hierarchical roughness, and the corresponding free energy expressions and apparent contact angle equations are deduced. The stable wetting states are confirmed by the principle of minimum free energy. And the calculated results by these state equations can fit well with the experimental results reported in the literature when compared with the previous models. Meanwhile, the influence of micro/nanoscale roughness on the stable wetting states and metastable-stable transition has been analyzed thermodynamically. It is found that there is a synergistic effect of micro and nanoscale roughness on wettability, which nlay result in many different wetting states. There are four wetting states during increasing relative pitch of a microscaled structure at a given nanoscaled structure, but two wetting states can be obtained as increasing relative pitch of nanoscaled structure at a given microscaled structure. The change of nondimensional energy and nondimensional energy barrier in the metastable-stable transition process of water droplet wetting micro and nanoscaled structure is quantitatively analyzed. Results indicate that the micro-scaled structure is never wetted in a special size range of the nanoscaled structure, and the special size range is of great significance to enhance superhydrophobic stability of the microscaled structure. Furthermore, the existence of microscaled structure decreases the transition energy barrier of water droplet wetting nanoscaled structure, which is helpful for understanding the experimental results reported in the literature. Finally, all possible stable wetting states of water droplet no a surface with micro/nanoscale hierarchical roughness are discribed in a wetting map. A design principle of superhydrophobic surface with micro/nanoscale hierarchical roughness is put forward, which is helpful to ensure the size of micro/nanoscale structure in the “stable superhydrophobic region” and to provide a theoretical guidance in the preparation of superhydrophobic surface.
      Corresponding author: Wu Hua-Ping, wuhuaping@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372280, 51205355, 51275447), and the Project of Education Bureau of Zhejiang Province, China (Grant No. Y201432142).
    [1]

    Neinhuis C, Barthlott W 1997 Ann. Bot. 79 667

    [2]

    Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W 2011 Beilstein J. Nanotechnol. 2 152

    [3]

    Bhushan B, Her E K 2010 Langmuir 26 8207

    [4]

    Gao H, Wang X, Yao H, Gorb S, Arzt E 2005 Mech. Mater. 37 275

    [5]

    Liu J L, Feng X Q, Xia R, Zhao H P 2007 J. Phys. D: Appl. Phys. 40 5564

    [6]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [7]

    Bhushan B, Nosonovsky M 2010 Phil. Trans. R. Soc. A 368 4713

    [8]

    Young T 1805 Philos. Trans. R. Soc. London 95 65

    [9]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [10]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [11]

    McHale G 2009 Langmuir 25 7185

    [12]

    Xia F, Jiang L 2008 Adv. Mater. 20 2842

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 56701

    [14]

    Yu J, Wang H J, Shao W J, Xu X L 2014 Chin. Phys. B 23 16803

    [15]

    Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C 2004 Adv. Mater. 16 1929

    [16]

    Gao L, McCarthy T J 2006 Langmuir 22 2966

    [17]

    Patankar N A 2004 Langmuir 20 8209

    [18]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [19]

    Sajadinia S H, Sharif F 2010 J. Colloid Interface Sci. 344 575

    [20]

    Cha T G, Yi J W, Moon M W, Lee K R, Kim H Y 2010 Langmuir 26 8319

    [21]

    Wang S T, Jiang L 2007 Adv. Mater. 19 3423

    [22]

    Hejazi V, Nosonovsky M 2013 Colloid. Polym. Sci. 291 329

    [23]

    Bormashenko E, Starov V 2013 Colloid. Polym. Sci. 291 343

    [24]

    Boreyko J B, Baker C H, Poley C R, Chen C H 2011 Langmuir 27 7502

    [25]

    Barbieri L, Wagner E, Hoffmann P 2007 Langmuir 23 1723

    [26]

    Extrand C W 2004 Langmuir 205013

    [27]

    Zhao X W, Jiang P, Gao Y, Wang J X, Song L, Liu D F, Liu L F, Dou XY, Luo S D, Zhang Z X, Xiang Y J, Zhou W Y and Wang G 2005 Chin.Phys. 14 1471

    [28]

    Wang B, Nian J Y 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍 2013 物理学报 62 146801]

    [29]

    2008 Eur. Phys. J. B 64 493

    [30]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [31]

    Nosonovsky M, Bhushan B 2007 Microelectron. Eng. 84 382

    [32]

    Xue Y H, Chu S G, Lv P Y, Duan H L 2012 Langmuir 28 9440

    [33]

    Whyman G, Bormashenko B 2011 Langmuir 27 8171

    [34]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [35]

    Pompe T, Herminghaus S 2000 Phys. Rev. Lett. 85 1930

    [36]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 物理学报 59 2601]

    [37]

    Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101

    [38]

    Öner D, McCarthy T J 2000 Langmuir 16 7777

    [39]

    Zheng Q S, Yu Y, Zhao Z H 2005 Langmuir 21 12207

    [40]

    Yao C W, Garvin T P, Alvarado J L, Jacobi A M, Jones B G, Marsh C P 2012 Appl. Phys. Lett. 101 111605

    [41]

    Li W, Amirfazli A 2005 J. Colloid Interface Sci. 292 195

  • [1]

    Neinhuis C, Barthlott W 1997 Ann. Bot. 79 667

    [2]

    Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W 2011 Beilstein J. Nanotechnol. 2 152

    [3]

    Bhushan B, Her E K 2010 Langmuir 26 8207

    [4]

    Gao H, Wang X, Yao H, Gorb S, Arzt E 2005 Mech. Mater. 37 275

    [5]

    Liu J L, Feng X Q, Xia R, Zhao H P 2007 J. Phys. D: Appl. Phys. 40 5564

    [6]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [7]

    Bhushan B, Nosonovsky M 2010 Phil. Trans. R. Soc. A 368 4713

    [8]

    Young T 1805 Philos. Trans. R. Soc. London 95 65

    [9]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [10]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [11]

    McHale G 2009 Langmuir 25 7185

    [12]

    Xia F, Jiang L 2008 Adv. Mater. 20 2842

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 56701

    [14]

    Yu J, Wang H J, Shao W J, Xu X L 2014 Chin. Phys. B 23 16803

    [15]

    Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C 2004 Adv. Mater. 16 1929

    [16]

    Gao L, McCarthy T J 2006 Langmuir 22 2966

    [17]

    Patankar N A 2004 Langmuir 20 8209

    [18]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [19]

    Sajadinia S H, Sharif F 2010 J. Colloid Interface Sci. 344 575

    [20]

    Cha T G, Yi J W, Moon M W, Lee K R, Kim H Y 2010 Langmuir 26 8319

    [21]

    Wang S T, Jiang L 2007 Adv. Mater. 19 3423

    [22]

    Hejazi V, Nosonovsky M 2013 Colloid. Polym. Sci. 291 329

    [23]

    Bormashenko E, Starov V 2013 Colloid. Polym. Sci. 291 343

    [24]

    Boreyko J B, Baker C H, Poley C R, Chen C H 2011 Langmuir 27 7502

    [25]

    Barbieri L, Wagner E, Hoffmann P 2007 Langmuir 23 1723

    [26]

    Extrand C W 2004 Langmuir 205013

    [27]

    Zhao X W, Jiang P, Gao Y, Wang J X, Song L, Liu D F, Liu L F, Dou XY, Luo S D, Zhang Z X, Xiang Y J, Zhou W Y and Wang G 2005 Chin.Phys. 14 1471

    [28]

    Wang B, Nian J Y 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍 2013 物理学报 62 146801]

    [29]

    2008 Eur. Phys. J. B 64 493

    [30]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [31]

    Nosonovsky M, Bhushan B 2007 Microelectron. Eng. 84 382

    [32]

    Xue Y H, Chu S G, Lv P Y, Duan H L 2012 Langmuir 28 9440

    [33]

    Whyman G, Bormashenko B 2011 Langmuir 27 8171

    [34]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [35]

    Pompe T, Herminghaus S 2000 Phys. Rev. Lett. 85 1930

    [36]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 物理学报 59 2601]

    [37]

    Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101

    [38]

    Öner D, McCarthy T J 2000 Langmuir 16 7777

    [39]

    Zheng Q S, Yu Y, Zhao Z H 2005 Langmuir 21 12207

    [40]

    Yao C W, Garvin T P, Alvarado J L, Jacobi A M, Jones B G, Marsh C P 2012 Appl. Phys. Lett. 101 111605

    [41]

    Li W, Amirfazli A 2005 J. Colloid Interface Sci. 292 195

  • [1] Wang Yan-Qing, Li Jia-Hao, Peng Yong, Zhao You-Hong, Bai Li-Chun. Current-carrying friction behavior of graphene with intervention of interfacial current. Acta Physica Sinica, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [2] Lu Shun-Shun, Zhang Jin-Min, Guo Xiao-Tian, Gao Ting-Hong, Tian Ze-An, He Fan, He Xiao-Jin, Wu Hong-Xian, Xie Quan. Thermal stability of compound stucture of silicon nanowire encapsulated in carbon nanotubes. Acta Physica Sinica, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [3] Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying. Stability of magnetization states in a ferromagnet/heavy metal bilayer structure. Acta Physica Sinica, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [4] Xu Wei, Lan Zhong, Peng Ben-Li, Wen Rong-Fu, Ma Xue-Hu. Molecular dynamics simulation on the wetting characteristic of micro-droplet on surfaces with different free energies. Acta Physica Sinica, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [5] Li Chun-Xi, Jiang Kai, Ye Xue-Min. Stability characteristics of thin film dewetting with insoluble surfactant. Acta Physica Sinica, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [6] Wang Ben, Nian Jing-Yan, Tie Lu, Zhang Ya-Bin, Guo Zhi-Guang. Theoretical progress in designs of stable superhydrophobic surfaces. Acta Physica Sinica, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [7] Liu Si-Si, Zhang Chao-Hui, He Jian-Guo, Zhou Jie, Yin Heng-Yang. Wetting state transition on hydrophilic microscale rough surface. Acta Physica Sinica, 2013, 62(20): 206201. doi: 10.7498/aps.62.206201
    [8] Niu Jun, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan. Evaluation of surface potential barriers after activation of GaAs photocathode. Acta Physica Sinica, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [9] Li Guang-Cheng, Chen Lei-Ming, Wang Dong-Xiao, Wu Da-Yong. Manifold stability of equilibrium state of autonomous generalized Birkhoff system. Acta Physica Sinica, 2010, 59(5): 2932-2934. doi: 10.7498/aps.59.2932
    [10] Ding Guo-Jian, Guo Li-Wei, Xing Zhi-Gang, Chen Yao, Xu Pei-Qiang, Jia Hai-Qiang, Zhou Jun-Ming, Chen Hong. Growth and character stics of AlGaN/GaN HEMT structures with AlN/GaN superlattices as barrier layers. Acta Physica Sinica, 2010, 59(8): 5724-5729. doi: 10.7498/aps.59.5724
    [11] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [12] Chen Hao, Deng Jin-Xiang, Liu Jun-Kai, Zhou Tao, Zhang Yan, Chen Guang-Hua. Phase transformation in process of deposition of cubic boron nitride thin films. Acta Physica Sinica, 2007, 56(6): 3418-3427. doi: 10.7498/aps.56.3418
    [13] Shen Han-Xin, Cai Na-Li, Wen Yu-Hua, Zhu Zi-Zhong. Structural stability and electronic structures of Nb atomic chains. Acta Physica Sinica, 2005, 54(11): 5362-5366. doi: 10.7498/aps.54.5362
    [14] Zhang Xiao-Dan, Zhao Ying, Gao Yan-Tao, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Fabrication of microcrystalline silicon thin film and the study of its microstructure and stability. Acta Physica Sinica, 2005, 54(8): 3910-3914. doi: 10.7498/aps.54.3910
    [15] YUAN ZHUO-QUAN, MA ZHONG-SUI, LI HUA-ZHONG. LARMOR CLOCK IN ONE-DIMENSIONAL COMBINED POTENTIAL. Acta Physica Sinica, 1998, 47(11): 1885-1895. doi: 10.7498/aps.47.1885
    [16] WANG YU-TIAN, ZHUANG YAN, JIANG DE-SHENG, YANG XIAO-PING, JIANG XIAO-MING, WU JIA-YANG, XIU LI-SONG, ZHENG WEN-LI. STUDY OF DOUBLE-BARRIER SUPERLATTICE BY SYNCHROTRON RADIATION AND DOUBLE-CRYSTAL X-RAY DIFFRACTION. Acta Physica Sinica, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [17] Li Yong-peng, Fang Rong-Chuan, Yang Feng-Yuan, Zhang Hai-Feng. . Acta Physica Sinica, 1995, 44(5): 788-794. doi: 10.7498/aps.44.788
    [18] Fu Si-Zu, Gu Yuan, Wu Jiang, Wang Shi-Ji, He Ju-Hua. . Acta Physica Sinica, 1995, 44(7): 1108-1112. doi: 10.7498/aps.44.1108
    [19] XU HUAI-ZHE, WANG YIN-YUE, ZHANG FANG-QING, CHEN GUANG-HUA. THEORETICAL STUDIES ON RESONANT TUNNELING IN MULTI-BARRIER STRUCTURES. Acta Physica Sinica, 1992, 41(9): 1493-1498. doi: 10.7498/aps.41.1493
    [20] He Shou-an;Xu Ji-an. AN ISOTHERMAL EQUATION OF STATE FOR SOLIDS (III) STABILITY OF THE MATERIAL UNDER HIGH PRESSURE. Acta Physica Sinica, 1979, 28(4): 581-588. doi: 10.7498/aps.28.581
Metrics
  • Abstract views:  5700
  • PDF Downloads:  320
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2014
  • Accepted Date:  29 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回