Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal

Yang Zhe Zhang Xiang Xiao Si He Jun Gu Bing

Citation:

Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal

Yang Zhe, Zhang Xiang, Xiao Si, He Jun, Gu Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Semiconductor materials exhibiting large optical nonlinearities and ultrafast nonlinear response have received extensive attention because of their potential applications in optical limiting, all-optical devices, optical telecommunication, and so on. As a direct-gap II-VI bulk semiconductor, ZnSe crystal has been exploited as the nonlinear optical devices in the regimes of nanoseconds and picoseconds during the past years. Owing to today's fast advance of laser sources with ultrashort femtosecond pulse duration, it is possible to investigate the ultrafast optical nonlinearities in the bulk ZnSe crystal. In this paper, we experimentally investigate the ultrafast dynamics of free-carriers induced by twophoton excitation in the bulk ZnSe crystal. By performing open-aperture Z-scan experiments with 41 fs laser pulses at the wavelength of 532 nm under the condition of low excitation intensity, the two-photon absorption coefficient is measured. As the excitation intensity exceeds a critical value, the interplay between third- and fifth-order nonlinear absorption processes is observed. To evaluate the ultrafast dynamics of free carriers, we have carried out femtosecond time-resolved degenerate pump-probe measurements with the same laser system used for Z-scan experiments in different levels of pump intensities. It is shown that the transient absorption signals peaked at the zero delay is a linearly increasing function of pump intensity, indicating that the observed instantaneous nonlinear absorption is dominated by the interband two-photon absorption process. At moderate irradiance, the transient absorption signals obviously indicate two components, arising from the two-photon absorption-induced free-carrier absorption, which is equivalent to the fifth-order nonlinear absorption process. Under the excitation of relatively high pump intensity, the magnitude of the reduction of free-carrier absorption signal becomes faster, suggesting that the ZnSe crystal exhibits a new effect and causes a transmittance change of the probe light. The presumable reasons are as follows: intense irradiances will result in the increase of carrier concentration and the rise of the lattice temperature as well as the narrowing of the band gap in the ZnSe crystal, which accelerates the electron-hole interband recombination process. Accordingly, the electron-hole recombination time decreases. Furthermore, when the carrier concentration is larger than 1018 cm-3, the occurrence of the electron-hole plasma is significant. At the same time, the enhancement of the scattering among the carriers results in the reduction of the free carrier absorption cross section. In summary, it is found that the free-carrier absorption cross section decreases whereas the electron-hole recombination time becomes shorter in ZnSe crystal as the excitation intensity increases, owing to both the narrowing of band gap and the occurrence of electron-hole plasma.
      Corresponding author: He Jun, junhe@csu.edu.cn;gubing@seu.edu.cn ; Gu Bing, junhe@csu.edu.cn;gubing@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61222406, 11174371), the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ1001), the Joint Specialized Research Fund for the Doctoral Program of Higher Education, MOE, China (Grant No. 20110162120072), the Program for New Century Excellent Talents in University of China (Grant No. NCET-11-0512), the Fundamental Research Funds for the Central Universities of Central South University, China.
    [1]

    Wang S Y, Hcirsburgh G, Thompson P, Hauksson I, Mullins J T, Prior K A, Cave nett B C 1993 Appl. Phys. Lett. 63 857

    [2]

    Zhang X, Fang H, Tang S, Ji W 1997 Appl. Phys. B 65 549

    [3]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Elect. 26 760

    [4]

    Wang J, Sheik-Bahae M, Said A A, Hagan D J, Stral E W 1994 J. Opt. Soc. Am. B 11 1009

    [5]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761

    [6]

    Gaur A, Sharma D K, Singh K S, Singh N 2007 Solid State Commun. 141 445

    [7]

    Yang H, Zhang T Q, Wang S F, Gong Q H 2000 Acta Phys. Sin. 49 1292 (in Chinese) [杨宏, 张铁桥, 王树峰, 龚旗煌 2000 物理学报 49 1292]

    [8]

    He J, Ji W, Ma G H, Tang S H, Kong S E W, Chow S Y, Zhang X H, Hua Z L, Shi J L 2005 Phys. Chem. B 109 4373

    [9]

    Gu B, Fan Y X, Chen J, Wang H T, He J, Ji W 2007 J. Appl. Phys. 102 083101

    [10]

    Fan G H, Qu S L, Guo Z Y, Wang Q, Li Z G 2012 Chin. Phys. B 21 047804

    [11]

    Jiang Y, Yang S Y, Zhang X L, Teng F, Xu, Z, Hou Y B 2006 Acta Phys. Sin. 55 4860 (in Chinese) [姜燕, 杨盛谊, 张秀龙, 滕枫, 徐征, 侯延冰 2006 物理学报 55 4860]

    [12]

    Haripadmam P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [13]

    Mita Y, Akami M, Maruyama S 2000 Appl. Phys. Lett. 76 2223

    [14]

    Kong D G, Ao G H, Gao Y C, Chang Q, Wu W Z, Ran L L, Ye H A 2012 Physica B 407 4251

    [15]

    Yao G X, Lv L H, M G F, Zhang X Y, Zheng X F, Ji X H, Zhang H, Cui Z F 2012 Chin. Phys. B 21 107801

    [16]

    Major A, Yoshino F, Aitchison J S, Smith W P E, Sorokin E, Sorokina I T 2004 Ap pl. Phys. Lett. 85 4606

    [17]

    Lami J F, Gilliot P, Hirlimann C 1996 Phys. Rev. Letters 77 1632

    [18]

    Canto-Said E J, Hagan D J, Young J, Stryland Van E W 1991 IEEE J. Quantum Elect. 27 10

    [19]

    Astakhov G V, Yakovlev D R 2002 Phys. Rev. B 65 165335

    [20]

    Ku S A, Tu C M, Chu W C, Luo C W, Wu K H, Yabushita A, Chi C C, Kobayashi T 2013 Opt. Express 21 13930

    [21]

    Sahraoui B, Chevalier R, Nguyen Phu X, Rivoire G, Bala W 1996 J. Appl. Phys. 80 4854

    [22]

    Krauss T D, Wise F W 1994 Appl. Phys. Lett. 65 1739

    [23]

    Jia T Q, Chen H X, Huang M, Zhao F L, Qiu J R, Li R X, Xu Z Z, He X K, Zhan g J, Kuroda H 2005 Phys. Rev. B 72 125429

    [24]

    Noor S A M, Miyakawa A, Kawata Y, Torizawa M 2008 Appl. Phys. Lett. 92 161106

    [25]

    Masoumeh S M, Wan M M Y, Khor S F, Zainal A T, Tamchek N 2013 Chin. Phys. B 22 117802

    [26]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]

    [27]

    He J, Mi J, Li H P, Ji W 2005 J. Phys. Chem. B 109 19184

    [28]

    Gu B, Sun Y, Ji W 2008 Opt. Express 16 17745

    [29]

    He J, Qu Y L, Li H P, Mi J, Ji W 2005 Opt. Express 13 9235

    [30]

    Van Stryland E W, Vanherzeele H, Woodall M A, Soileau M J, Smirl A L, Guha S, Boggess T F 1985 Opt. Eng. 24 613

    [31]

    Mehendale M, Sivananthan S, Andreas Schroeder W 1997 Appl. Phys. Lett. 71 1089

    [32]

    Perna G, Capozzi V, Ambrico M 1998 J. Appl. Phys. 83 3337

    [33]

    Wu W Z, Wang Y G 2015 Opt. Lett. 40 64

  • [1]

    Wang S Y, Hcirsburgh G, Thompson P, Hauksson I, Mullins J T, Prior K A, Cave nett B C 1993 Appl. Phys. Lett. 63 857

    [2]

    Zhang X, Fang H, Tang S, Ji W 1997 Appl. Phys. B 65 549

    [3]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Elect. 26 760

    [4]

    Wang J, Sheik-Bahae M, Said A A, Hagan D J, Stral E W 1994 J. Opt. Soc. Am. B 11 1009

    [5]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761

    [6]

    Gaur A, Sharma D K, Singh K S, Singh N 2007 Solid State Commun. 141 445

    [7]

    Yang H, Zhang T Q, Wang S F, Gong Q H 2000 Acta Phys. Sin. 49 1292 (in Chinese) [杨宏, 张铁桥, 王树峰, 龚旗煌 2000 物理学报 49 1292]

    [8]

    He J, Ji W, Ma G H, Tang S H, Kong S E W, Chow S Y, Zhang X H, Hua Z L, Shi J L 2005 Phys. Chem. B 109 4373

    [9]

    Gu B, Fan Y X, Chen J, Wang H T, He J, Ji W 2007 J. Appl. Phys. 102 083101

    [10]

    Fan G H, Qu S L, Guo Z Y, Wang Q, Li Z G 2012 Chin. Phys. B 21 047804

    [11]

    Jiang Y, Yang S Y, Zhang X L, Teng F, Xu, Z, Hou Y B 2006 Acta Phys. Sin. 55 4860 (in Chinese) [姜燕, 杨盛谊, 张秀龙, 滕枫, 徐征, 侯延冰 2006 物理学报 55 4860]

    [12]

    Haripadmam P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [13]

    Mita Y, Akami M, Maruyama S 2000 Appl. Phys. Lett. 76 2223

    [14]

    Kong D G, Ao G H, Gao Y C, Chang Q, Wu W Z, Ran L L, Ye H A 2012 Physica B 407 4251

    [15]

    Yao G X, Lv L H, M G F, Zhang X Y, Zheng X F, Ji X H, Zhang H, Cui Z F 2012 Chin. Phys. B 21 107801

    [16]

    Major A, Yoshino F, Aitchison J S, Smith W P E, Sorokin E, Sorokina I T 2004 Ap pl. Phys. Lett. 85 4606

    [17]

    Lami J F, Gilliot P, Hirlimann C 1996 Phys. Rev. Letters 77 1632

    [18]

    Canto-Said E J, Hagan D J, Young J, Stryland Van E W 1991 IEEE J. Quantum Elect. 27 10

    [19]

    Astakhov G V, Yakovlev D R 2002 Phys. Rev. B 65 165335

    [20]

    Ku S A, Tu C M, Chu W C, Luo C W, Wu K H, Yabushita A, Chi C C, Kobayashi T 2013 Opt. Express 21 13930

    [21]

    Sahraoui B, Chevalier R, Nguyen Phu X, Rivoire G, Bala W 1996 J. Appl. Phys. 80 4854

    [22]

    Krauss T D, Wise F W 1994 Appl. Phys. Lett. 65 1739

    [23]

    Jia T Q, Chen H X, Huang M, Zhao F L, Qiu J R, Li R X, Xu Z Z, He X K, Zhan g J, Kuroda H 2005 Phys. Rev. B 72 125429

    [24]

    Noor S A M, Miyakawa A, Kawata Y, Torizawa M 2008 Appl. Phys. Lett. 92 161106

    [25]

    Masoumeh S M, Wan M M Y, Khor S F, Zainal A T, Tamchek N 2013 Chin. Phys. B 22 117802

    [26]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]

    [27]

    He J, Mi J, Li H P, Ji W 2005 J. Phys. Chem. B 109 19184

    [28]

    Gu B, Sun Y, Ji W 2008 Opt. Express 16 17745

    [29]

    He J, Qu Y L, Li H P, Mi J, Ji W 2005 Opt. Express 13 9235

    [30]

    Van Stryland E W, Vanherzeele H, Woodall M A, Soileau M J, Smirl A L, Guha S, Boggess T F 1985 Opt. Eng. 24 613

    [31]

    Mehendale M, Sivananthan S, Andreas Schroeder W 1997 Appl. Phys. Lett. 71 1089

    [32]

    Perna G, Capozzi V, Ambrico M 1998 J. Appl. Phys. 83 3337

    [33]

    Wu W Z, Wang Y G 2015 Opt. Lett. 40 64

  • [1] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] Zhao Ke, Song Jun, Zhang Han. Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives. Acta Physica Sinica, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing, Liu Rong. Theoretical study on influence of photon reabsorption on photocarrier radiometric characteristics of silicon wafers. Acta Physica Sinica, 2019, 68(4): 047201. doi: 10.7498/aps.68.20181889
    [4] Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing. Determination of carrier bulk lifetime and surface recombination velocity in semiconductor from double-wavelength free carrier absorption. Acta Physica Sinica, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [5] Wu Xiang-Lian, Zhao Ke, Jia Hai-Hong, Wang Fu-Qing. Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center. Acta Physica Sinica, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [6] Zhang Xi-Ren, Gao Chun-Ming. Time domain theory of the electronic transport property of semiconductors measured by means of square-wave-modulated free carrier absorption technique. Acta Physica Sinica, 2014, 63(13): 137801. doi: 10.7498/aps.63.137801
    [7] Jia Ke-Ning, Liu Zhong-Bo, Liang Ying, Tong Dian-Min, Fan Xi-Jun. Effect of Doppler broadening on VIC-dependent two-photon absorption in Y-type four-level system. Acta Physica Sinica, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [8] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [9] Miao Quan, Zhao Peng, Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Two-photon area evolution and optical limiting of ultrashort laser pulses in DBASVP molecule media. Acta Physica Sinica, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [10] Sun Yuan-Hong, Wang Chuan-Kui. Theoretical study on two-photon absorption properties of novel multi-branched compounds. Acta Physica Sinica, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [11] Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Effect of time-dependent ionization on properties of the ultrashort pulse propagation and optical power limiting in a two-photon absorption molecular medium. Acta Physica Sinica, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [12] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] Zhao Ke, Sun Yuan-Hong, Wang Chuan-Kui, Luo Yi, Zhang Xian, Yu Xiao-Qiang, Jiang Min-Hua. Studies on two-photon absorption cross-sections of 1,4-dimethoxy-2,5-divinyl-benzene derivatives. Acta Physica Sinica, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] Jiang Jun, Li Ning, Chen Gui-Bin, Lu Wei, Wang Ming-Kai, Yang Xue-Ping, Wu Gang, Fan Yao-Hui, Li Yong-Gui, Yuan Xian-Zhang. Free-electron laser induced nonlinear optical absorption in semiconductors. Acta Physica Sinica, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] He Guo-Hua, Zhang Jun-Xiang, Ye Li-Hua, Cui Yi-Ping, Li Zhen-Hua, Lai Jian-Cheng, He An-Zhi. Broadband two-photon absorption and optical power limiting properties of a novel organic compound. Acta Physica Sinica, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] Zhang Yan-Liang, Jiang Li, Niu Yue-Ping, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Interference enhancement of two-photon absorption caused by a pair of coherent superposition levels in Na. Acta Physica Sinica, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] JIA TIAN-QING, CHEN HONG, WU XIANG. PHOTON ABSORPTION OF CONDUCTION BAND ELECTRONS AND ITS EFFECTS ON THE DAMAGE PRO CESSES. Acta Physica Sinica, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
Metrics
  • Abstract views:  5048
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2015
  • Accepted Date:  26 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回