Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of propagation properties of electromagnetic waves through large planar plasma sheets

Xia Jun-Ming Xu Yue-Min Sun Yue-Qiang Huo Wen-Qing Sun Hai-Long Bai Wei-Hua Liu Cong-Liang Meng Xiang-Guang

Citation:

Analysis of propagation properties of electromagnetic waves through large planar plasma sheets

Xia Jun-Ming, Xu Yue-Min, Sun Yue-Qiang, Huo Wen-Qing, Sun Hai-Long, Bai Wei-Hua, Liu Cong-Liang, Meng Xiang-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large planar plasma sheets, generated by a linear hollow cathode in pulse discharge mode under magnetic confinement, can be used in the field of plasma antenna, plasma stealth, and simulation of a plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Firstly, to investigate the propagation properties of electromagnetic waves at different frequencies and polarization, the transverse field transfer matrix method is introduced. Secondly, the measured electron density temporal and spatial distribution and the transverse field transfer matrix method are utilized to calculate the reflection, transmission and absorption of electromagnetic waves by large planar plasma sheets with different currents. Finally, 1 GHz (less than the critical cut-off frequency) electromagnetic waves and 4 GHz (greater than the critical frequency) electromagnetic waves are chosen to investigate the evolution of propagation properties during the pulsed discharge period. Results show that both the reflection and absorption of the electromagnetic waves are greater for their polarization direction parallel to that of magnetic field, and their frequencies lower than the critical cut-off frequency, and as the discharge currents rise, the reflection increases while the absorption decreases. However both the reflection and absorption of the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction and their frequency greater than the critical cut-off frequency become less, and as the discharge currents rise, both the reflection and absorption will increase. For the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction, there is an upper hybrid resonance absorption band near the upper hybrid resonance frequencies, in which the absorption is significant but the absorption peak value is not affected by the discharge current. The propagation characteristics of the electromagnetic waves with polarization direction perpendicular to the magnetic field direction are the same as that of the electromagnetic waves with the polarization direction parallel to the magnetic field direction, except the upper hybrid resonance absorption. During the pulse discharge period, the propagation characteristic of the electromagnetic waves experiences an unstable phase before reaching steady states. The transition time is about 100 s and increases as the discharge current rises. The upper hybrid resonance absorption is significant during the phase of steady state for waves with frequency lower than the critical cut-off frequency and polarization direction parallel to the magnetic field direction. For the applications of a large planar plasma sheet to reflect electromagnetic waves effectively and steadily, the pulse discharge period should be larger than 100 s, and its discharge current should be large enough to make the critical cut-off frequency greater than the frequency of incident wave, and its polarization direction should be parallel to the magnetic field direction.
      Corresponding author: Xia Jun-Ming, xiajunming10@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41405039, 41405040).
    [1]

    Caillault L, Larigaldie S 2002 J. Phys. D: Appl. Phys. 35 1010

    [2]

    Mathew J, Fernsler R F, Meger R A, Gregor J A, Murphy D P, Pechacek R E, Manheimer W M 1996 Phys. Rev. Lett. 77 1982

    [3]

    Manheimer W M 1991 IEEE Trans. Plasma Sci. 19 1228

    [4]

    Fernsler R F, Manheimer W M, Meger R A, Mathew J, Murphy D P, Pechacek R E, Gregor J A 1998 Phys. Plasmas 5 2137

    [5]

    Manheimer W M, Fernsler R F, Gitlin M S 1998 IEEE Trans. Plasma Sci. 26 1543

    [6]

    Gillman E D, Amatucci W E 2014 Phys. Plasmas 21 060701

    [7]

    Zhuang Z W, Yuan N C, Liu S B, Me J J 2005 Plasma Stealth Technology (Beijing: Science Press) p46 (in Chinese) [庄钊文, 袁乃昌, 刘少斌, 莫锦军 2005 等离子体隐身技术(北京: 科学出版社)第46页]

    [8]

    Larigaldie S, Caillault L 2000 J. Phys. D: Appl. Phys. 33 3190

    [9]

    Cheng Z F, Ding L, Xu Y M, Liang C, Jian F S 2009 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 丁亮, 徐跃民, 梁超, 鉴福升 2009 电波科学学报 24 1137]

    [10]

    Cheng Z F, Xu Y M, Liang C, Ding L, Jian F S, Zhu X 2010 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 徐跃民, 梁超, 丁亮, 鉴福升, 朱翔 2010 电波科学学报 24 1137]

    [11]

    Ding L, Huo W Q, Yang X J, Xu Y M 2012 Plasma Sci. Technol. 14 9

    [12]

    Huo W Q, Guo S J, Ding L, Xu Y M 2013 Plasma Sci. Technol. 15 979

    [13]

    Negi J G, Singh R N 1968 Pure Appl. Geophys. 70 74

    [14]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702(in Chinese) [郑宏兴, 葛德彪 2000 物理学报 49 1702]

    [16]

    Yin X, Zhang H, Sun S J, Zhao Z W, Hu Y L 2013 Prog. Electromagn. Res. 137 159

    [17]

    Mathew J, Meger R A, Fernsler R F, Gregor J A 1996 Rev. Sci. Instrum. 67 2818

    [18]

    Leonhardt D, Walton S G, Blackwell D D, Amatucci W E, Murphy D P, Fersnelr R F, Meger R A 2001 J. Vac. Sci. Technol. A 19 1367

    [19]

    Blackwell D D, Walton S G, Leonhardt D, Murphy D P, Fernsler R F, Amatucci W E, Meger R A 2001 J. Vac. Sci. Technol. A 19 1330

    [20]

    Zhang L, Zhang H X, Yang X Z, Feng C H, Qiao B, Wang L 2003 Chin. Phys. Lett. 20 1984

    [21]

    Lock E H, Fernsler R F, Walton S G 2008 Plasma Sources Sci. Technol. 17 025009

    [22]

    Wan J, Jia X L, Yang J H, Wang S G 2010 IEEE Trans. Plasma Sci. 38 2006

  • [1]

    Caillault L, Larigaldie S 2002 J. Phys. D: Appl. Phys. 35 1010

    [2]

    Mathew J, Fernsler R F, Meger R A, Gregor J A, Murphy D P, Pechacek R E, Manheimer W M 1996 Phys. Rev. Lett. 77 1982

    [3]

    Manheimer W M 1991 IEEE Trans. Plasma Sci. 19 1228

    [4]

    Fernsler R F, Manheimer W M, Meger R A, Mathew J, Murphy D P, Pechacek R E, Gregor J A 1998 Phys. Plasmas 5 2137

    [5]

    Manheimer W M, Fernsler R F, Gitlin M S 1998 IEEE Trans. Plasma Sci. 26 1543

    [6]

    Gillman E D, Amatucci W E 2014 Phys. Plasmas 21 060701

    [7]

    Zhuang Z W, Yuan N C, Liu S B, Me J J 2005 Plasma Stealth Technology (Beijing: Science Press) p46 (in Chinese) [庄钊文, 袁乃昌, 刘少斌, 莫锦军 2005 等离子体隐身技术(北京: 科学出版社)第46页]

    [8]

    Larigaldie S, Caillault L 2000 J. Phys. D: Appl. Phys. 33 3190

    [9]

    Cheng Z F, Ding L, Xu Y M, Liang C, Jian F S 2009 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 丁亮, 徐跃民, 梁超, 鉴福升 2009 电波科学学报 24 1137]

    [10]

    Cheng Z F, Xu Y M, Liang C, Ding L, Jian F S, Zhu X 2010 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 徐跃民, 梁超, 丁亮, 鉴福升, 朱翔 2010 电波科学学报 24 1137]

    [11]

    Ding L, Huo W Q, Yang X J, Xu Y M 2012 Plasma Sci. Technol. 14 9

    [12]

    Huo W Q, Guo S J, Ding L, Xu Y M 2013 Plasma Sci. Technol. 15 979

    [13]

    Negi J G, Singh R N 1968 Pure Appl. Geophys. 70 74

    [14]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702(in Chinese) [郑宏兴, 葛德彪 2000 物理学报 49 1702]

    [16]

    Yin X, Zhang H, Sun S J, Zhao Z W, Hu Y L 2013 Prog. Electromagn. Res. 137 159

    [17]

    Mathew J, Meger R A, Fernsler R F, Gregor J A 1996 Rev. Sci. Instrum. 67 2818

    [18]

    Leonhardt D, Walton S G, Blackwell D D, Amatucci W E, Murphy D P, Fersnelr R F, Meger R A 2001 J. Vac. Sci. Technol. A 19 1367

    [19]

    Blackwell D D, Walton S G, Leonhardt D, Murphy D P, Fernsler R F, Amatucci W E, Meger R A 2001 J. Vac. Sci. Technol. A 19 1330

    [20]

    Zhang L, Zhang H X, Yang X Z, Feng C H, Qiao B, Wang L 2003 Chin. Phys. Lett. 20 1984

    [21]

    Lock E H, Fernsler R F, Walton S G 2008 Plasma Sources Sci. Technol. 17 025009

    [22]

    Wan J, Jia X L, Yang J H, Wang S G 2010 IEEE Trans. Plasma Sci. 38 2006

  • [1] Chen Long, Tan Cong-Qi, Cui Zuo-Jun, Duan Ping, An Yu-Hao, Chen Jun-Yu, Zhou Li-Na. Multi-ion magnetized sheath properties with non-extensive electron distribution. Acta Physica Sinica, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu. Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma. Acta Physica Sinica, 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [4] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [5] Ding Liang, Huo Wen-Qing, Yang Xin-Jie, Xu Yue-Min. Density distribution of large planar plasma sheet. Acta Physica Sinica, 2012, 61(11): 115204. doi: 10.7498/aps.61.115204
    [6] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [7] Wang Xue-Mei, Liu Hong. Band structures of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [8] Yue Ting, He Hao, Zhang Xing, Li Guang. Electronic density distribution of La0.55Ca0.45MnO3 revealed by temperature-dependent X-ray diffraction. Acta Physica Sinica, 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [9] Zhang Hong-Chao, Lu Jian, Ni Xiao-Wu. Experimental diagnosis of electron density of laser induced air plasma by interferometry. Acta Physica Sinica, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [10] Yang Juan, Xu Ying-Qiao, Zhu Liang-Ming. Diagnostic study on the electron density distribution of microwave plasma jet in local vacuum environment. Acta Physica Sinica, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [11] Hao Zuo-Qiang, Yu Jin, Zhang Jie, Yuan Xiao-Hui, Zheng Zhi-Yuan, Yang Hui, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [12] Wang Chen, Wang Wei, Sun Jin-Ren, Fang Zhi-Heng, Wu Jiang, Fu Si-Zu, Ma Wei-Xin, Gu Yuan, Wang Shi-Ji, Zhang Guo-Ping, Zheng Wu-Di, Zhang Tan-Xin, Peng Hui-Min, Shao Ping, Yi Kui, Lin Zun-Qi, Wang Zhan-Shan, Wang Hong-Chang, Zhou Bin, Chen Ling-Yan. Experimental diagnoses of plasma electron density by interferometry using an x-ray laser as probe. Acta Physica Sinica, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [13] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [14] Zhang Yong-Hui, Jiang Jin-Sheng, Chang An-Bi. Study of the hollow cathode plasma electron-gun. Acta Physica Sinica, 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [15] Wang Chen, Gu Yuan, Fu Si-Zu, Zhou Guan-Lin, Wu Jiang, Wang Wei, Sun Yu-Qin, Dong Jia-Xin, Sun Jin-Ren, Wang Rui-Rong, Ni Yuan-Long, Wan Bing-Gen, Huang Guang-Long, Zhang Guo-Peng, Lin Zun-Qi, Wang Shi-Ji. . Acta Physica Sinica, 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [16] LI YU-TONG, ZHANG JIE, CHEN LI-MING, XIA JIANG-FAN, TENG HAO, WEI ZHI-YI, JIANG WEN-MIAN. OBSERVATION OF THE TRANSVERSE PINCH OF THE EXPANSION OF AN FEMTOSECOND LASER-PLA SMA. Acta Physica Sinica, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
    [17] WANG WEN-ZHONG, ZHANG TAN-XIN, HE ZHAO-TANG, GU YU-QIU, LONG YONG-LU, JIANG WEN-MIAN. DIAGNOSTICS OF ELECTRON DENSITY OF LASER-PRODU-CED PLASMA FROM THE XUV SPECTRA OF AgXIX. Acta Physica Sinica, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [18] LU PEI-XIANG, ZHANG ZHENG-QUAN, XU ZHI-ZHAN, FAN PIN-ZHONG, SHEN BAI-FEI, CHEN SHI-SHENG. SPATIAL DISTRIBUTIONS OF X-RAY LASING LINEWIDTH AND ELECTRON DENSITY IN A Li-LIKE SILICON PLASMA. Acta Physica Sinica, 1993, 42(2): 273-276. doi: 10.7498/aps.42.273
    [19] CHENG CHENG, SUN WEI, TANG CHUAN-SHUN. TIME RESOLVED ELECTRON TEMPERATURE AND DENSITY IN A PULSED LASER PLASMA. Acta Physica Sinica, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
    [20] KANG SHOU-WAN, CAI SHI-DONG. THE CRITICAL VELOCITY OF RUNAWAY ELECTRONS IN A MAGNETIZED PLASMA. Acta Physica Sinica, 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
Metrics
  • Abstract views:  4819
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2015
  • Accepted Date:  14 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回