Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

STXM observation and quantitative study of magnetic vortex structure

Sun Lu Huo Yan Zhou Chao Liang Jian-Hui Zhang Xiang-Zhi Xu Zi-Jian Wang Yong Wu Yi-Zheng

Citation:

STXM observation and quantitative study of magnetic vortex structure

Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic recording has now played an important role in the development of non-volatile information storage technologies, so it becomes essential to quantitatively understand the magnetization distribution in magnetic microstructures. In ferromagnetic disks, squares and triangles with submicron sizes, it is energetically favorable for the magnetization to form a closed in-plane vortex and a perpendicular vortex core at the center. This vortex magnetic structure is a new candidate for future magnetic memory device because both the vortex chirality and the core polarity can be manipulated by applying an external magnetic field or a spin-polarized current. Further development of vortex-based memory devices requires quantitative measurement of vortex domain structures, which is still lacking.In this paper, magnetization configuration in a vortex structure has been quantitatively studied by scanning transmission X-ray microscope (STXM) utilizing X-ray magnetic circular dichroism (XMCD) effect in Shanghai Synchrotron Radiation Facility. Samples have been fabricated on the 100 nm silicon-nitride membranes. The patterns are first transferred to PMMA photoresist using e-beam lithography, then a 50 nm thick Ni80Fe20 film is deposited by e-beam evaporation. Magnetic vortex configurations are characterized with the X-ray energy at Fe L3 absorption edge and Ni L3 absorption edge, respectively. The image taken at Fe edge shows greater contrast than that at Ni edge. Experimental results indicate that the magnetic vortex state remains stable in permalloy circle, square and triangle structures with diameters from 2 to 5 m. The STXM images indicate that the magnetization in circular geometry changes continuously along the concentric circles without clear domain boundaries. In contrast, magnetization in square geometry consists of four distinct domains with clear diagonal domain boundaries. Similarly, three domains can be observed in triangle geometry. In order to quantify the in-plane magnetization configuration in magnetic vortices, we also use micromagnetic simulation to calculate the magnetization distributions of these three geometries. By extracting Mx along the circular profiles in both experimental and simulated vortex images, we find that the experimental magnetic profiles in the STXM images are consistent with the simulation data quantitatively. These magnetic structures are also studied by magnetic force microscopy (MFM). Since MFM is only sensitive to the dipolar magnetic field around the domain boundary, the MFM images show different configurations from the STXM images.
      Corresponding author: Wu Yi-Zheng, wuyizheng@fudan.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB921401) and the National Natural Science Foundation of China (Grant No. 11474066).
    [1]

    Eisenmenger J Schuller I K 2003 Nat. Mater. 2 437

    [2]

    Skumryev V, Stoyanoc S, Zhang Y, Hadjipanayis G, Givord D, Mogues J 2003 Nature 423 850

    [3]

    Weller D, Doerner M F 2000 Annu. Rev. Mater. Sci. 30 611

    [4]

    Terris B D, Thomson T 2005 J. Phys. D: Appl. Phys. 38 R199

    [5]

    Castano F J, Hao Y, Hwang M, Ross C A, Vogeli B, Smith H I, Haratani S 2001 Appl. Phys. Lett. 79 1504

    [6]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441

    [7]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, One T 2000 Science 289 930

    [8]

    Chou S Y 1997 Proc IEEE 85 652

    [9]

    Onomura A 1987 Rev Mod Phys 59 639

    [10]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [11]

    Pulwey R, Rahm M, Biberger J, Weiss D 2001 IEEE Trans. Magn 37 2076

    [12]

    Choe S B 2004 Science 304 420

    [13]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [14]

    Shibata J, Nakatani Y, Tatara G, Kohno H, Otani Y 2006 Phys. Rev. B 73 020403

    [15]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiavelle A, Ono T 2007 Nat. Mater. 6 269

    [16]

    Bolte M, Meier G, Kruger B, Drews A, Elselt R, Bocklage L, Bohlens S Tyliszczak T, Vansteenkiste A, Van Waeyenberge B Chou K W, Puzic A, Stoll H 2008 Phys. Rev. Lett. 100 176601

    [17]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Ono T 2008 Appl. Phys. Lett. 93 152502

    [18]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [19]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [20]

    Im M Y, Fischer P, Yamada K, Sato T, Kasai S, Nakatani Y, Ono T 2012 Nat. Commun. 3 983

    [21]

    Butenko A B, Leonov A A, Bogdanov A N, Rossler U K 2009 Phys. Rev. B 80 134410

    [22]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [23]

    Luo Y M, Zhou C, Won C, Wu Y Z 2015 J. Appl. Phys. 117 163916

    [24]

    Wu Y Z 2010 Phisics 39 406 (in Chinese) [吴义政 2010 物理 39 406]

    [25]

    Smith N V, Chen C T, Sette F, Mattheiss L F 1992 Phys. Rev. B 46 1023

    [26]

    Zhang X Z, Xu Z J, Zhen X J, Wang Y, Guo Z, Yan R, Chang R, Zhou R R, Tai R Z 2010 Acta Phys. Sin. 59 4535(in Chinese) [张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠 2010 物理学报 59 4535]

    [27]

    Brown J, William Fuller 1963 Micromagnetics (New York Interscience Publishers)

    [28]

    Landau L D, Lifshitz E M 1935 Phys. Z. Sowietunion 8 153

  • [1]

    Eisenmenger J Schuller I K 2003 Nat. Mater. 2 437

    [2]

    Skumryev V, Stoyanoc S, Zhang Y, Hadjipanayis G, Givord D, Mogues J 2003 Nature 423 850

    [3]

    Weller D, Doerner M F 2000 Annu. Rev. Mater. Sci. 30 611

    [4]

    Terris B D, Thomson T 2005 J. Phys. D: Appl. Phys. 38 R199

    [5]

    Castano F J, Hao Y, Hwang M, Ross C A, Vogeli B, Smith H I, Haratani S 2001 Appl. Phys. Lett. 79 1504

    [6]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441

    [7]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, One T 2000 Science 289 930

    [8]

    Chou S Y 1997 Proc IEEE 85 652

    [9]

    Onomura A 1987 Rev Mod Phys 59 639

    [10]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [11]

    Pulwey R, Rahm M, Biberger J, Weiss D 2001 IEEE Trans. Magn 37 2076

    [12]

    Choe S B 2004 Science 304 420

    [13]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [14]

    Shibata J, Nakatani Y, Tatara G, Kohno H, Otani Y 2006 Phys. Rev. B 73 020403

    [15]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiavelle A, Ono T 2007 Nat. Mater. 6 269

    [16]

    Bolte M, Meier G, Kruger B, Drews A, Elselt R, Bocklage L, Bohlens S Tyliszczak T, Vansteenkiste A, Van Waeyenberge B Chou K W, Puzic A, Stoll H 2008 Phys. Rev. Lett. 100 176601

    [17]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Ono T 2008 Appl. Phys. Lett. 93 152502

    [18]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [19]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [20]

    Im M Y, Fischer P, Yamada K, Sato T, Kasai S, Nakatani Y, Ono T 2012 Nat. Commun. 3 983

    [21]

    Butenko A B, Leonov A A, Bogdanov A N, Rossler U K 2009 Phys. Rev. B 80 134410

    [22]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [23]

    Luo Y M, Zhou C, Won C, Wu Y Z 2015 J. Appl. Phys. 117 163916

    [24]

    Wu Y Z 2010 Phisics 39 406 (in Chinese) [吴义政 2010 物理 39 406]

    [25]

    Smith N V, Chen C T, Sette F, Mattheiss L F 1992 Phys. Rev. B 46 1023

    [26]

    Zhang X Z, Xu Z J, Zhen X J, Wang Y, Guo Z, Yan R, Chang R, Zhou R R, Tai R Z 2010 Acta Phys. Sin. 59 4535(in Chinese) [张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠 2010 物理学报 59 4535]

    [27]

    Brown J, William Fuller 1963 Micromagnetics (New York Interscience Publishers)

    [28]

    Landau L D, Lifshitz E M 1935 Phys. Z. Sowietunion 8 153

  • [1] Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Miao Yan-Long, Zhao Zi-Xiang, He Jia-Jun, Ye Hui-Qun, Fang Yun-Zhang. Mechanism of stress induced irreversible magnetic anisotropy in Fe-based alloy ribbons. Acta Physica Sinica, 2022, 71(24): 247501. doi: 10.7498/aps.71.20221509
    [2] Qiang Jin, He Kai-Zhou, Liu Dong-Ni, Lu Qi-Hai, Han Gen-Liang, Song Yu-Zhe, Wang Xiang-Qian. Study of magnetic vortex spin wave mode in triangular structures. Acta Physica Sinica, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [3] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [4] Li Dong, Dong Sheng-Zhi, Li Lei, Xu Ji-Yuan, Chen Hong-Sheng, Li Wei. Micromagnetic simulations of reversal magnetization in core ((Nd0.7, Ce0.3)2Fe14B)-shell (Nd2Fe14B) type. Acta Physica Sinica, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [5] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [6] Dong Dan-Na, Cai Li, Li Cheng, Liu Bao-Jun, Li Chuang, Liu Jia-Hao. Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction. Acta Physica Sinica, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [7] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [8] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [9] Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei. Local energy of magnetic vortex core reversal. Acta Physica Sinica, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [10] Sun Ming-Juan, Liu Yao-Wen. Controlling of magnetic vortex chirality and polarity by spin-polarized current. Acta Physica Sinica, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [11] Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong. Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration. Acta Physica Sinica, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [12] Peng Yi, Zhao Guo-Ping, Wu Shao-Quan, Si Wen-Jing, Wan Xiu-Lin. Micromagnetic simulation and analysis of Nd2Fe14B/Fe65Co35 magnetic bilayered thin films with different orientations of the easy axis. Acta Physica Sinica, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [13] Xia Jing, Zhang Xi-Chao, Zhao Guo-Ping. Micromagnetic analysis of the effect of the easy axis orientation on demagnetization process in Nd2Fe14B/α-Fe bilayers. Acta Physica Sinica, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [14] Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun. Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires. Acta Physica Sinica, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [15] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [16] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [17] Song San-Yuan, Guo Guang-Hua, Zhang Guang-Fu, Song Wen-Bin. Dynamical reversal of rectangular nanodot studied by micromagnetics. Acta Physica Sinica, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [18] Ma Li, Zhu Zhi-Yong, Li Min, Yu Shi-Dan, Cui Qi-Liang, Zhou Qiang, Chen Jing-Lan, Wu Guang-Heng. Structure and magnetic properties of stress-induced martensites in ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, 2009, 58(5): 3479-3484. doi: 10.7498/aps.58.3479
    [19] Yang Xiu-Hui. Micromagnetic simulations of the initial spontaneous magnetic states of nanoscale Fe islands on W(110) substrates. Acta Physica Sinica, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [20] Yin Jin-Hua, C. H. Hee, Pan Li-Qing. First order reversal curves of laminated antiferromagnetically coupled media. Acta Physica Sinica, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
Metrics
  • Abstract views:  5911
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2015
  • Accepted Date:  05 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回