Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface

He Yan-Bin Jia Jian-Feng Wu Hai-Shun

Citation:

First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface

He Yan-Bin, Jia Jian-Feng, Wu Hai-Shun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We use the density functional theory (DFT) with dispersion correction to investigate the stability and electronic structure of hydrazine (N2H4) adsorpted on Ni8Fe8/Ni (111) alloy surface. The geometries and adsorption characteristics of the structure on the Ni8Fe8 alloy surface are presented. Results show that N2H4 bridging between two iron atoms gives the strongest adsorption with an adsorption energy of -1.578 eV/N2H4. Top modes turn out to be the local minima with adsorption energies of -1.346 eV/N2H4 (for the top site on a Fe atom) and -1.061 eV/N2H4 (for the top site on a Ni atom). It is demonstrated that the bridging mode is more favorable than the top mode on the NiFe alloy surface with a coverage of 1/16 ML, and Fe atom can provide stronger adsorption site than Ni atom. The van der Waals contribution is significant with a value of about 0.4 eV/N2H4. Meanwhile, the van der Waals contribution is larger for adsorption on Fe atom than on Ni atom, and for adsorption of the bridging mode than of the top mode. We also find that the structure of N2H4 in the anti molecule, rather than the gauche molecule, is bound on the top site of Fe atom on the NiFe alloy surface with a coverage of 1/16 ML, which demonstrates that the repulsive adsorbate-adsorbate interaction is weak on the surface with low coverage. The strong interaction between the surface atom and the adsorbate contributes to the result that the lone pair electrons of N2H4 in gauche conformer are attracted by the Fe atom. In addition, for the five adsorption structures of N2H4 on Ni8Fe8/Ni(111) alloy surface, we analyze the projected electronic density of states (DOS), induced charge density and electron localisation function (ELF) slices through the Fe-N or Ni-N bonds of the adsorbed molecule on the alloy surface. It shows that the electronic DOS presents the mixture between HOMO of N2H4 and the d orbital of the surface atom, which corresponds to charge transfer between the substrate and the adsorbate. The charges are transferred mainly from N2H4 to the surface atoms, and the extents of charge transfer are different for the bridging mode and the top one which is present in the induced charge density. Furthermore, the region of localisation in the ELF slices can be found for the adsorptions between the N atom of N2H4 and the Fe or Ni atom of surface, which gives a clear view of the coordination bonds for the interactions of N–Fe or N–Ni.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21373131) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1035).
    [1]

    Cao N, Su J, Luo W, Cheng G 2014 Int. J. Hydrogen Energ. 39 9726

    [2]

    He L, Huang Y, Liu X Y, Li L, Wang A, Wang X, Mou C Y, Zhang T 2014 Appl. Catal. B: Environ. 147 779

    [3]

    Serov A, Padilla M, Roy A J, Atanassov P, Sakamoto T, Asazawa K, Tanaka H 2014 Angew. Chem. Int. Ed. 53 10336

    [4]

    Singh S K, Zhang X B, Xu Q 2009 J. Am. Chem. Soc. 131 9894

    [5]

    Singh S K, Xu Q 2009 J. Am. Chem. Soc. 131 18032

    [6]

    Singh A K, Yadav M, Aranishi K, Xu Q 2012 Int. J. Hydrogen Energ. 37 18915

    [7]

    Singh S K, Lizuka Y, Xu Q 2011 Int. J. Hydrogen Energ. 36 11794

    [8]

    Singh S K, Xu Q 2010 Chem. Commun. 46 6545

    [9]

    Singh S K, Singh A K, Aranishi K, Xu Q 2011 J. Am. Chem. Soc. 133 19638

    [10]

    Manukyan K V, Cross A, Rouvimov S, Miller J, Mukasyan A S, Wolf E E 2014 Appl. Catal. A: Gen. 476 47

    [11]

    Chen J H, Liu E K, Li Y, Qi X, Liu G D, Luo H Z, Wang W H, Wu G H 2015 Acta Phys. Sin. 64 077104 (in Chinese) [陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒 2015 物理学报 64 077104]

    [12]

    Liao J, Xie Z Q, Yuan J M, Huang Y P, Mao Y L 2014 Acta Phys. Sin. 63 163101 (in Chinese) [廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮 2014 物理学报 63 163101]

    [13]

    Li L, Xu J, Xu L F, Lian C S, Li J J, Wang J T, Gu C Z 2015 Chin. Phys. B 24 056803

    [14]

    Daff T D, Costa D, Lisiecki I, de Leeuw N H 2009 J. Phys. Chem. C 113 15714

    [15]

    Daff T D, de Leeuw N H 2012 J. Mater. Chem. 22 23210

    [16]

    Tafreshi S S, Roldan A, Dzade N Y, de Leeuw N H 2014 Surf. Sci. 622 1

    [17]

    Tafreshi S S, Roldan A, de Leeuw N H 2014 J. Phys. Chem. C 118 26103

    [18]

    Zhang P X, Wang Y G, Huang Y Q, Zhang T, Wu G S, Li J 2011 Catal. Today 165 80

    [19]

    Agusta M K, Kasai H 2012 Surf. Sci. 606 766

    [20]

    McKay H L, Jenkins S J, Wales D J 2011 J. Phys. Chem. C 115 17812

    [21]

    Deng Z, Lu X, Wen Z, Wei S, Liu Y, Fu D, Zhao L, Guo W 2013 Phys. Chem. Chem. Phys. 15 16172

    [22]

    Zhu J P, Ma L, Zhou S M, Miao J, Jiang Y 2015 Chin. Phys. B 24 017101

    [23]

    He Y B, Jia J F, Wu H S 2015 Appl. Surf. Sci. 339 36

    [24]

    Pereira A O, Miranda C R 2014 Appl. Surf. Sci. 288 564

    [25]

    Carrasco J, Liu W, Michaelides A, Tkatchenko A 2014 J. Chem. Phys. 140 084704

    [26]

    Atodiresei N, Caciuc V, Franke J H, Blgel S 2008 Phys. Rev. B 78 045411

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci 6 15

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [37]

    Štich I, Car R, Parrinello M, Baroni S 1989 Phys. Rev. B 39 4997

    [38]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [39]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456

    [40]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [41]

    Tereshchuk P, Da Silva J L F 2012 J. Phys. Chem. C 116 24695

    [42]

    He Y B, Jia J F, Wu H S 2015 J. Phys. Chem. C 119 8763

    [43]

    Albright T A, Burdett J K, Whangbo M H 2013 Orbital Interactions in Chemistry (2nd Ed.) (New York: John Wiley & Sons, Inc.)

    [44]

    Kitchin J R, Nørskov J K, Barteau M A, Chen J G 2004 J. Chem. Phys. 120 10240

    [45]

    Burdett J K, McCormick T A 1998 J. Phys. Chem. A 102 6366

    [46]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

  • [1]

    Cao N, Su J, Luo W, Cheng G 2014 Int. J. Hydrogen Energ. 39 9726

    [2]

    He L, Huang Y, Liu X Y, Li L, Wang A, Wang X, Mou C Y, Zhang T 2014 Appl. Catal. B: Environ. 147 779

    [3]

    Serov A, Padilla M, Roy A J, Atanassov P, Sakamoto T, Asazawa K, Tanaka H 2014 Angew. Chem. Int. Ed. 53 10336

    [4]

    Singh S K, Zhang X B, Xu Q 2009 J. Am. Chem. Soc. 131 9894

    [5]

    Singh S K, Xu Q 2009 J. Am. Chem. Soc. 131 18032

    [6]

    Singh A K, Yadav M, Aranishi K, Xu Q 2012 Int. J. Hydrogen Energ. 37 18915

    [7]

    Singh S K, Lizuka Y, Xu Q 2011 Int. J. Hydrogen Energ. 36 11794

    [8]

    Singh S K, Xu Q 2010 Chem. Commun. 46 6545

    [9]

    Singh S K, Singh A K, Aranishi K, Xu Q 2011 J. Am. Chem. Soc. 133 19638

    [10]

    Manukyan K V, Cross A, Rouvimov S, Miller J, Mukasyan A S, Wolf E E 2014 Appl. Catal. A: Gen. 476 47

    [11]

    Chen J H, Liu E K, Li Y, Qi X, Liu G D, Luo H Z, Wang W H, Wu G H 2015 Acta Phys. Sin. 64 077104 (in Chinese) [陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒 2015 物理学报 64 077104]

    [12]

    Liao J, Xie Z Q, Yuan J M, Huang Y P, Mao Y L 2014 Acta Phys. Sin. 63 163101 (in Chinese) [廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮 2014 物理学报 63 163101]

    [13]

    Li L, Xu J, Xu L F, Lian C S, Li J J, Wang J T, Gu C Z 2015 Chin. Phys. B 24 056803

    [14]

    Daff T D, Costa D, Lisiecki I, de Leeuw N H 2009 J. Phys. Chem. C 113 15714

    [15]

    Daff T D, de Leeuw N H 2012 J. Mater. Chem. 22 23210

    [16]

    Tafreshi S S, Roldan A, Dzade N Y, de Leeuw N H 2014 Surf. Sci. 622 1

    [17]

    Tafreshi S S, Roldan A, de Leeuw N H 2014 J. Phys. Chem. C 118 26103

    [18]

    Zhang P X, Wang Y G, Huang Y Q, Zhang T, Wu G S, Li J 2011 Catal. Today 165 80

    [19]

    Agusta M K, Kasai H 2012 Surf. Sci. 606 766

    [20]

    McKay H L, Jenkins S J, Wales D J 2011 J. Phys. Chem. C 115 17812

    [21]

    Deng Z, Lu X, Wen Z, Wei S, Liu Y, Fu D, Zhao L, Guo W 2013 Phys. Chem. Chem. Phys. 15 16172

    [22]

    Zhu J P, Ma L, Zhou S M, Miao J, Jiang Y 2015 Chin. Phys. B 24 017101

    [23]

    He Y B, Jia J F, Wu H S 2015 Appl. Surf. Sci. 339 36

    [24]

    Pereira A O, Miranda C R 2014 Appl. Surf. Sci. 288 564

    [25]

    Carrasco J, Liu W, Michaelides A, Tkatchenko A 2014 J. Chem. Phys. 140 084704

    [26]

    Atodiresei N, Caciuc V, Franke J H, Blgel S 2008 Phys. Rev. B 78 045411

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci 6 15

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [37]

    Štich I, Car R, Parrinello M, Baroni S 1989 Phys. Rev. B 39 4997

    [38]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [39]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456

    [40]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [41]

    Tereshchuk P, Da Silva J L F 2012 J. Phys. Chem. C 116 24695

    [42]

    He Y B, Jia J F, Wu H S 2015 J. Phys. Chem. C 119 8763

    [43]

    Albright T A, Burdett J K, Whangbo M H 2013 Orbital Interactions in Chemistry (2nd Ed.) (New York: John Wiley & Sons, Inc.)

    [44]

    Kitchin J R, Nørskov J K, Barteau M A, Chen J G 2004 J. Chem. Phys. 120 10240

    [45]

    Burdett J K, McCormick T A 1998 J. Phys. Chem. A 102 6366

    [46]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

  • [1] Li Xiao-Lin, Yuan Kun, He Jia-Le, Liu Hong-Feng, Zhang Jian-Bo, Zhou Yang. First principle study of adsorption and desorption behaviors of NH3 molecule on the TaC (0001) surface. Acta Physica Sinica, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] Adsorption and Desorption Behaviors of the NH3 Molecule on the TaC (0001) surface: A First-Principles Study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210400
    [4] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [5] Cao Qing-Song, Deng Kai-Ming. Theoretical studies of geometric and electronic structures of X@C20F20 (X=He, Ne, Ar, Kr). Acta Physica Sinica, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [6] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [7] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [8] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [9] Tang Chun-Mei, Guo Wei, Zhu Wei-Hua, Liu Ming-Yi, Zhang Ai-Mei, Gong Jiang-Feng, Wang Hui. Density functional calculations of geomatric structure, electronic structure, stability, and magnetic properties of transitional atom endohedral unclassical fullerene M@C22(M=Sc,Ti, V, Cr, Mn, Fe, Co and Ni). Acta Physica Sinica, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [10] Lv Bing, Linghu Rong-Feng, Song Xiao-Shu, Wang Xiao-Lu, Yang Xiang-Dong, He Duan-Wei. Adsorption and diffusion of oxygen on Pt (111) surface and subsurface. Acta Physica Sinica, 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [11] Cao Qing-Song, Yuan Yong-Bo, Xiao Chuan-Yun, Lu Rui-Feng, Kan Er-Jun, Deng Kai-Ming. Density functional study on the geometric and electronic properties of C80H80. Acta Physica Sinica, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [12] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [13] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [14] Huang Ping, Yang Chun. Theoretical research of TiO2 adsorption on GaN(0001) surface. Acta Physica Sinica, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [15] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [16] Zhang Jian-Jun, Zhang Hong. A low coverage investigation on Al adsorption on the (111) surface of Pt, Ir and Au. Acta Physica Sinica, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [17] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [18] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [19] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [20] Chen Guo-Dong, Wang Liu-Ding, Zhang Jiao-Qiang, Cao De-Cai, An Bo, Ding Fu-Cai, Liang Jin-Kui. First-principles study of electron field emission from the carbon nanotube with B doping and H2O adsorption. Acta Physica Sinica, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
Metrics
  • Abstract views:  5399
  • PDF Downloads:  268
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2015
  • Accepted Date:  24 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回