Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of high mobility germanium based metal oxide semiconductor devices

An Xia Huang Ru Li Zhi-Qiang Yun Quan-Xin Lin Meng Guo Yue Liu Peng-Qiang Li Ming Zhang Xing

Citation:

Research progress of high mobility germanium based metal oxide semiconductor devices

An Xia, Huang Ru, Li Zhi-Qiang, Yun Quan-Xin, Lin Meng, Guo Yue, Liu Peng-Qiang, Li Ming, Zhang Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Germanium based metal oxide semiconductor (MOS) device has been a research hotspot and considered as a potential candidate for future complementary MOS (CMOS) technology due to its high and symmetric carrier mobility. However, the poor quality of gate dielectric/channel interface significantly restricts the performances of germanium based MOS devices. Besides, the solid-solubility and activation concentration of dopants in Ge are both quite low, and the dopants diffuse fast in Ge, which makes it difficult to achieve ultra-shallow junction with high dopant concentration, especially for Ge NMOS devices.To solve these problems, different techniques are proposed and overviewed. The proposed nitrogen-plasma-passivation method can effectively suppress the regrowth of germanium sub-oxide and reduce the interface state density. Thus the performance of the fabricated Ge NMOS device is significantly improved. To enhance the n-type dopant activation in Ge, the multiple implantation technique and the multiple annealing technique are proposed. High electrical activation over 1 1020 cm-3 is achieved, and the corresponding contact resistivity is reduced to 3.8 10-7 cm2. Besides, the implantation after germanide (IAG) technique is first proposed to modulate the Schottky barrier height (SBH). The record-low electron SBH of 0.10 eV is obtained by IAG technique, and the optimized process window is given. In addition, the poor thermal stability of NiGe restricts the further improvement in performance of Ge MOS device. P and Sb co-implantation technique and novel ammonium fluoride pretreatment method are proposed to improve the thermal stability of NiGe. The electrical characteristic of NiGe/Ge diode is also improved simultaneously. The results provide the guidelines for further enhancing the performances of germanium-based MOS devices.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00601), the National Natural Science Foundation of China (Grant Nos. 61421005, 61434007, 60806033, 61474004), and the National Science and Technology Major Project of the Ministry of Science and Technology of China.
    [1]

    Ghani T, Armstrong M, Auth C, et al. 2003 International Electron Devices Meeting Washington, DC, America, December 8-10, 2003 p978

    [2]

    Oishi A, Fujii O, Yokoyama T, et al. 2005 International Electron Devices Meeting Washington, DC, America, December 5-7, 2005 p229

    [3]

    Kim S D, Jain S, Rhee H, et al. 2010 International Conference on Simulation of Semiconductor Processes and Devices Bologna, Italy, Sept. 6-8, 2010 p79

    [4]

    Yang B, Nummy K, Waite A, et al. 2007 Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2007 p126

    [5]

    Claeys C, Simoen E 2007 Germanium-Based Technologies: From Materials to Devices (Amsterdam: Elsevier)

    [6]

    Mitard J, De Jaeger B, Leys F E, et al. 2008 International Electron Devices Meeting San Francisco, America, December 15-17, 2008 p873

    [7]

    Heyns M, Alian A, Brammertz G, et al. 2011 International Electron Devices Meeting Washington, DC, America, December 5-7, 2011 p299

    [8]

    Duriez B, Vellianitis G, van Dal M J H, et al. 2013 International Electron Devices Meeting Washington, DC, America, December 9-11, 2013 p522

    [9]

    Mitard J, Witters L, Loo R, et al. 2014 Symposium on VLSI Technology Honolulu, Hawaii, America, June 9-12, 2014 p138

    [10]

    Witters L, Mitard J, Loo R, et al. 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p56

    [11]

    Wu H, Luo W, Zhou H, Si M W, Zhang J Y, Ye P D 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p58

    [12]

    Bernstein R B, Cubicciotti D 1951 J. Amer. Chem. Soc. 73 4112

    [13]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 10PE04

    [14]

    Kita K, Wang S K, Yoshida M, Lee C, Nagashio K, Nishimura T, Toriumi A 2009 International Electron Devices Meeting Baltimore, America, December 7-9, 2009 p693

    [15]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01

    [16]

    Wang S K, Kita K, Lee C, Tabata T, Nishimura T, Nagashio K, Toriumi A 2010 J. Appl. Phys. 108 054104

    [17]

    Lee D, Lee H, Kanashima T, Okuyama M 2010 Appl. Surf. Sci 257 917

    [18]

    Xie R, Yu M, Lai M, Chan L, Zhu C 2008 Appl. Phys. Lett. 92 163505

    [19]

    Kamata Y, Ino T, Koyama M, Nishiyama A 2008 Appl. Phys. Lett. 92 063512

    [20]

    Dei K, Kawase T, Yoneda K, Uchikoshi J, Morita M, Arima K 2011 J. Nanosci. Nanotech. 11 2968

    [21]

    Frank M M, Koester S J, Copel M, Ott J A, Paruchuri V K, Shang H, Loesing R 2006 Appl. Phys. Lett. 89 112905

    [22]

    Kaczer B, Jaeger B D, Nicholas G, Martens K, Degraeve R, Houssa M, Pourtois G, Leys F, Meuris M, Groesenken G 2007 Microelectron. Eng. 84 2067

    [23]

    Wu N, Zhang Q, Zhu C, Chan D S H, Du A, Balasubramanian N, Li M F, Chin A, Sin J K O, Kwong D L 2004 IEEE Electron Device Lett. 25 631

    [24]

    Bai W P, Lu N, Kwong D L 2005 IEEE Electron Device Lett. 26 378

    [25]

    Crisman E E, Lee J I, Stiles P J, Gregory O J 1987 Electron. Lett. 23 8

    [26]

    Lee C H, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A 2009 International Electron Devices Meeting Baltimore, MD, America, December 7-9, 2009 p457

    [27]

    Lee C H, Nishimura T, Tabata T, Wang S K, Nagashio K, Kita K, Toriumi A 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p416

    [28]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Kita K, Toriumi A 2009 Appl. Phys. Expr. 2 071404,

    [29]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Electron Devices 58 1295

    [30]

    Kuzum D, Krishnamohan T, Pethe A J, Okyay A K, Oshima Y, Sun Y 2008 IEEE Electron Device Lett. 29 328

    [31]

    Deng S R, Xie Q, Deduytsche D, Schaekers M, Lin D, Caymax M, Delabie A, van den Berghe S, Qu X P, Detavernier C 2011 Appl. Phys. Lett. 99 052906

    [32]

    Fukuda Y, Yazaki Y, Otani Y, Sato T, Toyota H, Ono T 2010 IEEE Trans. Electron Devices 57 282

    [33]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [34]

    Lau W S, Qian P W, Sandler N P, McKinley K A, Chu P K 1997 Jpn. J. Appl. Phys. 36 661

    [35]

    Chui C O, Kim H, McIntyre P C, Saraswat K C 2004 IEEE Electron Device Lett. 25 274

    [36]

    Hymes D J, Rosenberg J J 1988 J. Electrochem. Soc. 135 961

    [37]

    Yun Q X, Li M, An X, Lin M, Liu P Q, Li Z Q, Zhang B X, Xia Y X, Zhang H, Zhang X, Huang R, Wang Y Y 2014 Chin. Phys. B 23 118504

    [38]

    Lin M, Li M, An X, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2013 Semicond. Sci. Tech. 28 085010

    [39]

    Lu C, Lee C H, Nishimura T, Toriumi A 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p18

    [40]

    Trumbore F A 1960 Bell Syst. Tech. J. 39 205

    [41]

    Chui C O, Kulig L, Moran J, Tsai W, Saraswat K C 2005 Appl. Phys. Lett. 87 091909

    [42]

    Chui C O, Gopalakrishnan K, Griffin P B, Plummer J D, Saraswat K C 2003 Appl. Phys. Lett. 83 3275

    [43]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [44]

    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110

    [45]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [46]

    Martens K, Firrincieli A, Rooyackers R, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p428

    [47]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [48]

    Thareja G, Chopra S, Adams B, et al. 2010 Device Research Conference South Bend, Indiana, America, June 21-23, 2010 p23

    [49]

    Thareja G, Liang J, Chopra S, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p245

    [50]

    Wndisch C, Posselt M, Schmidt B, et al. 2009 Appl. Phys. Lett. 95 252107

    [51]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [52]

    Bhatt P, Swarnkar P, Misra A, Biswas J, Hatem C, Nainani A, Lodha S 2015 IEEE Trans. Electron Devices 62 69

    [53]

    Park J H, Kuzum D, Tada M, Krishna C S 2008 Appl. Phys. Lett. 93 193507

    [54]

    Jamil M, Mantey J, Onyegam E U, Carpenter G D, Tutuc E, Banerjee S K 2011 IEEE Electron Device Lett. 32 1203

    [55]

    Li Z Q, An X, Yun Q X, Lin M, Li M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 1097

    [56]

    Raghunathan S, Krishnamohan T, Saraswat K C 2010 ECS Trans. 33 871

    [57]

    Thareja G, Cheng S L, Kamins T, Saraswat K, Nishi Y 2011 IEEE Electron Device Lett. 32 608

    [58]

    Lin J Y, Roy A M, Saraswat K C 2012 IEEE Electron Device Lett. 33 1541

    [59]

    Manik P P, Mishra R K, Kishore V P, Ray P, Nainani A, Huang Y C, Abraham M C, Ganguly U, Lodha S 2012 Appl. Phys. Lett. 101 182105

    [60]

    Liu P Q, Li M, An X, Lin M, Zhao Y, Zhang B X, Xia X X, Huang R 2015 Silicon Nanoelectronics Workshop Kyoto, Japan, June 14-15, 2015

    [61]

    Claeys C, Firrincieli A, Martens K, Kittl J A, Simoen E 2012 8th International Caribbean Conference on Devices, Circuits and Systems Playa del Carmen, Mexico, March 14-17, 2012 p1

    [62]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [63]

    Brillson L J 2007 J. Vac. Sci. Techn. A 25 943

    [64]

    Heine V 1965 Phys. Rev. A 138 1689

    [65]

    Nishimura T, Kita K, Toriumi A 2008 Appl. Phys. Express 1 051406

    [66]

    Zhou Y, Ogawa M, Han X, Wang K L 2008 Appl. Phys. Lett. 93 202105

    [67]

    Lin J Y J, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113

    [68]

    Lieten R, Degroote S, Kuijk M, Borghs G 2008 Appl. Phys. Lett. 92 022106

    [69]

    Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2009 J. Appl. Phys. 105 023702

    [70]

    Li Z Q, An X, Yun Q X, Lin M, Zhang X, Huang R 2012 ECS Solid State Lett. 1 Q33

    [71]

    Thathachary A V, Bhat K N, Bhat N, Hegde M S 2010 Appl. Phys. Lett. 96 152108

    [72]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773

    [73]

    Ikeda K, Yamashita Y, Sugiyama N, Taoka N, Takagi S 2006 Appl. Phys. Lett. 88 152115

    [74]

    Thornton R 1981 Electron. Lett. 17 485

    [75]

    Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J, Kato K 2007 International Electron Devices Meeting Washington, DC, America, December 10-12, 2007 p963

    [76]

    Zhen Z, Qiu Z, Ran L, Ostling M, Zhang S L 2007 IEEE Electron Device Lett. 28 565

    [77]

    Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estevez S, Mantl S 2008 Mater. Sci. Eng. B 154 168

    [78]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron Device Lett. 33 1687

    [79]

    Guo Y, An X, Huang R, Fan C H, Zhang X 2010 Appl. Phys. Lett. 96 143502

    [80]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 596

    [81]

    Lee K, Liew S, Chua S, Chi D, Sun H, Pan X 2004 Materials Research Society Spring Meeting San Francisco, CA, America, April 12-16, 2004 pC2.4

    [82]

    Ashburn S P, Öztrk M C, Harris G, Maher D M 1993 J. Appl. Phys. 74 4455

    [83]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Lee G W, Majhi P, Tseng H H, Jammy R, Lee H D 2010 IEEE Trans. Nanotechnol. 9 258

    [84]

    Nakatsuka O, Suzuki A, Sakai A, Ogawa M, Zaima S 2007 International Workshop on Junction Technology Kyoto, Japan, June 8-9, 2007 p87

    [85]

    Zhu S, Yu M, Lo G, Kwong D 2007 Appl. Phys. Lett. 91 051905

    [86]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Shin H S, Lee G W, Wang J S, Majhi P, Tseng H H, Jammy R, Bae T S, Lee H D 2009 Electrochem. Solid-State Lett. 12 H18

    [87]

    Zhang Y Y, Oh J, Han I S, Zhong Z, Li S G, Jung S Y, Park K Y, Shin H S, Choi W H, Kwon H M, Loh W Y, Majhi P, Jammy R, Lee H D 2009 IEEE Trans. Electron Devices 56 348

    [88]

    Guo Y, An X, Wang R S, Zhang X, Huang R 2011 IEEE Electron Device Lett. 32 554

  • [1]

    Ghani T, Armstrong M, Auth C, et al. 2003 International Electron Devices Meeting Washington, DC, America, December 8-10, 2003 p978

    [2]

    Oishi A, Fujii O, Yokoyama T, et al. 2005 International Electron Devices Meeting Washington, DC, America, December 5-7, 2005 p229

    [3]

    Kim S D, Jain S, Rhee H, et al. 2010 International Conference on Simulation of Semiconductor Processes and Devices Bologna, Italy, Sept. 6-8, 2010 p79

    [4]

    Yang B, Nummy K, Waite A, et al. 2007 Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2007 p126

    [5]

    Claeys C, Simoen E 2007 Germanium-Based Technologies: From Materials to Devices (Amsterdam: Elsevier)

    [6]

    Mitard J, De Jaeger B, Leys F E, et al. 2008 International Electron Devices Meeting San Francisco, America, December 15-17, 2008 p873

    [7]

    Heyns M, Alian A, Brammertz G, et al. 2011 International Electron Devices Meeting Washington, DC, America, December 5-7, 2011 p299

    [8]

    Duriez B, Vellianitis G, van Dal M J H, et al. 2013 International Electron Devices Meeting Washington, DC, America, December 9-11, 2013 p522

    [9]

    Mitard J, Witters L, Loo R, et al. 2014 Symposium on VLSI Technology Honolulu, Hawaii, America, June 9-12, 2014 p138

    [10]

    Witters L, Mitard J, Loo R, et al. 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p56

    [11]

    Wu H, Luo W, Zhou H, Si M W, Zhang J Y, Ye P D 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p58

    [12]

    Bernstein R B, Cubicciotti D 1951 J. Amer. Chem. Soc. 73 4112

    [13]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 10PE04

    [14]

    Kita K, Wang S K, Yoshida M, Lee C, Nagashio K, Nishimura T, Toriumi A 2009 International Electron Devices Meeting Baltimore, America, December 7-9, 2009 p693

    [15]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01

    [16]

    Wang S K, Kita K, Lee C, Tabata T, Nishimura T, Nagashio K, Toriumi A 2010 J. Appl. Phys. 108 054104

    [17]

    Lee D, Lee H, Kanashima T, Okuyama M 2010 Appl. Surf. Sci 257 917

    [18]

    Xie R, Yu M, Lai M, Chan L, Zhu C 2008 Appl. Phys. Lett. 92 163505

    [19]

    Kamata Y, Ino T, Koyama M, Nishiyama A 2008 Appl. Phys. Lett. 92 063512

    [20]

    Dei K, Kawase T, Yoneda K, Uchikoshi J, Morita M, Arima K 2011 J. Nanosci. Nanotech. 11 2968

    [21]

    Frank M M, Koester S J, Copel M, Ott J A, Paruchuri V K, Shang H, Loesing R 2006 Appl. Phys. Lett. 89 112905

    [22]

    Kaczer B, Jaeger B D, Nicholas G, Martens K, Degraeve R, Houssa M, Pourtois G, Leys F, Meuris M, Groesenken G 2007 Microelectron. Eng. 84 2067

    [23]

    Wu N, Zhang Q, Zhu C, Chan D S H, Du A, Balasubramanian N, Li M F, Chin A, Sin J K O, Kwong D L 2004 IEEE Electron Device Lett. 25 631

    [24]

    Bai W P, Lu N, Kwong D L 2005 IEEE Electron Device Lett. 26 378

    [25]

    Crisman E E, Lee J I, Stiles P J, Gregory O J 1987 Electron. Lett. 23 8

    [26]

    Lee C H, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A 2009 International Electron Devices Meeting Baltimore, MD, America, December 7-9, 2009 p457

    [27]

    Lee C H, Nishimura T, Tabata T, Wang S K, Nagashio K, Kita K, Toriumi A 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p416

    [28]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Kita K, Toriumi A 2009 Appl. Phys. Expr. 2 071404,

    [29]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Electron Devices 58 1295

    [30]

    Kuzum D, Krishnamohan T, Pethe A J, Okyay A K, Oshima Y, Sun Y 2008 IEEE Electron Device Lett. 29 328

    [31]

    Deng S R, Xie Q, Deduytsche D, Schaekers M, Lin D, Caymax M, Delabie A, van den Berghe S, Qu X P, Detavernier C 2011 Appl. Phys. Lett. 99 052906

    [32]

    Fukuda Y, Yazaki Y, Otani Y, Sato T, Toyota H, Ono T 2010 IEEE Trans. Electron Devices 57 282

    [33]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [34]

    Lau W S, Qian P W, Sandler N P, McKinley K A, Chu P K 1997 Jpn. J. Appl. Phys. 36 661

    [35]

    Chui C O, Kim H, McIntyre P C, Saraswat K C 2004 IEEE Electron Device Lett. 25 274

    [36]

    Hymes D J, Rosenberg J J 1988 J. Electrochem. Soc. 135 961

    [37]

    Yun Q X, Li M, An X, Lin M, Liu P Q, Li Z Q, Zhang B X, Xia Y X, Zhang H, Zhang X, Huang R, Wang Y Y 2014 Chin. Phys. B 23 118504

    [38]

    Lin M, Li M, An X, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2013 Semicond. Sci. Tech. 28 085010

    [39]

    Lu C, Lee C H, Nishimura T, Toriumi A 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p18

    [40]

    Trumbore F A 1960 Bell Syst. Tech. J. 39 205

    [41]

    Chui C O, Kulig L, Moran J, Tsai W, Saraswat K C 2005 Appl. Phys. Lett. 87 091909

    [42]

    Chui C O, Gopalakrishnan K, Griffin P B, Plummer J D, Saraswat K C 2003 Appl. Phys. Lett. 83 3275

    [43]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [44]

    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110

    [45]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [46]

    Martens K, Firrincieli A, Rooyackers R, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p428

    [47]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [48]

    Thareja G, Chopra S, Adams B, et al. 2010 Device Research Conference South Bend, Indiana, America, June 21-23, 2010 p23

    [49]

    Thareja G, Liang J, Chopra S, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p245

    [50]

    Wndisch C, Posselt M, Schmidt B, et al. 2009 Appl. Phys. Lett. 95 252107

    [51]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [52]

    Bhatt P, Swarnkar P, Misra A, Biswas J, Hatem C, Nainani A, Lodha S 2015 IEEE Trans. Electron Devices 62 69

    [53]

    Park J H, Kuzum D, Tada M, Krishna C S 2008 Appl. Phys. Lett. 93 193507

    [54]

    Jamil M, Mantey J, Onyegam E U, Carpenter G D, Tutuc E, Banerjee S K 2011 IEEE Electron Device Lett. 32 1203

    [55]

    Li Z Q, An X, Yun Q X, Lin M, Li M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 1097

    [56]

    Raghunathan S, Krishnamohan T, Saraswat K C 2010 ECS Trans. 33 871

    [57]

    Thareja G, Cheng S L, Kamins T, Saraswat K, Nishi Y 2011 IEEE Electron Device Lett. 32 608

    [58]

    Lin J Y, Roy A M, Saraswat K C 2012 IEEE Electron Device Lett. 33 1541

    [59]

    Manik P P, Mishra R K, Kishore V P, Ray P, Nainani A, Huang Y C, Abraham M C, Ganguly U, Lodha S 2012 Appl. Phys. Lett. 101 182105

    [60]

    Liu P Q, Li M, An X, Lin M, Zhao Y, Zhang B X, Xia X X, Huang R 2015 Silicon Nanoelectronics Workshop Kyoto, Japan, June 14-15, 2015

    [61]

    Claeys C, Firrincieli A, Martens K, Kittl J A, Simoen E 2012 8th International Caribbean Conference on Devices, Circuits and Systems Playa del Carmen, Mexico, March 14-17, 2012 p1

    [62]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [63]

    Brillson L J 2007 J. Vac. Sci. Techn. A 25 943

    [64]

    Heine V 1965 Phys. Rev. A 138 1689

    [65]

    Nishimura T, Kita K, Toriumi A 2008 Appl. Phys. Express 1 051406

    [66]

    Zhou Y, Ogawa M, Han X, Wang K L 2008 Appl. Phys. Lett. 93 202105

    [67]

    Lin J Y J, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113

    [68]

    Lieten R, Degroote S, Kuijk M, Borghs G 2008 Appl. Phys. Lett. 92 022106

    [69]

    Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2009 J. Appl. Phys. 105 023702

    [70]

    Li Z Q, An X, Yun Q X, Lin M, Zhang X, Huang R 2012 ECS Solid State Lett. 1 Q33

    [71]

    Thathachary A V, Bhat K N, Bhat N, Hegde M S 2010 Appl. Phys. Lett. 96 152108

    [72]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773

    [73]

    Ikeda K, Yamashita Y, Sugiyama N, Taoka N, Takagi S 2006 Appl. Phys. Lett. 88 152115

    [74]

    Thornton R 1981 Electron. Lett. 17 485

    [75]

    Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J, Kato K 2007 International Electron Devices Meeting Washington, DC, America, December 10-12, 2007 p963

    [76]

    Zhen Z, Qiu Z, Ran L, Ostling M, Zhang S L 2007 IEEE Electron Device Lett. 28 565

    [77]

    Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estevez S, Mantl S 2008 Mater. Sci. Eng. B 154 168

    [78]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron Device Lett. 33 1687

    [79]

    Guo Y, An X, Huang R, Fan C H, Zhang X 2010 Appl. Phys. Lett. 96 143502

    [80]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 596

    [81]

    Lee K, Liew S, Chua S, Chi D, Sun H, Pan X 2004 Materials Research Society Spring Meeting San Francisco, CA, America, April 12-16, 2004 pC2.4

    [82]

    Ashburn S P, Öztrk M C, Harris G, Maher D M 1993 J. Appl. Phys. 74 4455

    [83]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Lee G W, Majhi P, Tseng H H, Jammy R, Lee H D 2010 IEEE Trans. Nanotechnol. 9 258

    [84]

    Nakatsuka O, Suzuki A, Sakai A, Ogawa M, Zaima S 2007 International Workshop on Junction Technology Kyoto, Japan, June 8-9, 2007 p87

    [85]

    Zhu S, Yu M, Lo G, Kwong D 2007 Appl. Phys. Lett. 91 051905

    [86]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Shin H S, Lee G W, Wang J S, Majhi P, Tseng H H, Jammy R, Bae T S, Lee H D 2009 Electrochem. Solid-State Lett. 12 H18

    [87]

    Zhang Y Y, Oh J, Han I S, Zhong Z, Li S G, Jung S Y, Park K Y, Shin H S, Choi W H, Kwon H M, Loh W Y, Majhi P, Jammy R, Lee H D 2009 IEEE Trans. Electron Devices 56 348

    [88]

    Guo Y, An X, Wang R S, Zhang X, Huang R 2011 IEEE Electron Device Lett. 32 554

  • [1] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [2] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] Zheng Qi-Wen, Cui Jiang-Wei, Wang Han-Ning, Zhou Hang, Yu De-Zhao, Wei Ying, Su Dan-Dan. Dose-rate sensitivity of deep sub-micro complementary metal oxide semiconductor process. Acta Physica Sinica, 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [4] Xin Yan-Hui, Liu Hong-Xia, Wang Shu-Long, Fan Xiao-Jiao. Two-dimensional model of symmetrical double-gate strained Si single Halo metal-oxide semiconductor field effect transistor with gate stack dielectric. Acta Physica Sinica, 2014, 63(24): 248502. doi: 10.7498/aps.63.248502
    [5] Bai Yu-Rong, Xu Jing-Ping, Liu Lu, Fan Min-Min, Huang Yong, Cheng Zhi-Xiang. Modeling on drain current of high-k gate dielectric fully-depleted nanoscale germanium-on-insulator p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [6] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [7] Li Shuai-Shuai, Liang Chao-Xu, Wang Xue-Xia, Li Yan-Hui, Song Shu-Mei, Xin Yan-Qing, Yang Tian-Lin. The preparation and characteristics research of high mobility amorphous indium gallium zinc oxide thin-film transistors. Acta Physica Sinica, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [8] Wang Bin, Zhang He-Ming, Hu Hui-Yong, Zhang Yu-Ming, Song Jian-Jun, Zhou Chun-Yu, Li Yu-Chen. Study on gate capacitance-voltage characteristics of strained-SiGe pMOSFET. Acta Physica Sinica, 2013, 62(12): 127102. doi: 10.7498/aps.62.127102
    [9] Chen Hai-Feng. Characteristics of gate-modulated generation current under the reverse substrate bias in nano-nMOSFET. Acta Physica Sinica, 2013, 62(18): 188503. doi: 10.7498/aps.62.188503
    [10] Xu Li-Jun, Zhang He-Ming. Drain-induced barrier-lowering effect in surrounding-gate schottky barrier metal-oxide semiconductor field transistor. Acta Physica Sinica, 2013, 62(10): 108502. doi: 10.7498/aps.62.108502
    [11] Hu Hui-Yong, Lei Shuai, Zhang He-Ming, Song Jian-Jun, Xuan Rong-Xi, Shu Bin, Wang Bin. Study of gate depletion effect in strained Si NMOSFET with polycrystalline silicon germanium gate. Acta Physica Sinica, 2012, 61(10): 107301. doi: 10.7498/aps.61.107301
    [12] Cao Lei, Liu Hong-Xia, Wang Guan-Yu. Study of modeling for hetero-materiel gate fully depleted SSDOI MOSFET. Acta Physica Sinica, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [13] Fan Xue, Li Wei, Li Ping, Zhang Bin, Xie Xiao-Dong, Wang Gang, Hu Bin, Zhai Ya-Hong. Total ionizing dose effects on n-channel metal oxide semiconductor transistors with annular-gate and ring-gate layouts. Acta Physica Sinica, 2012, 61(1): 016106. doi: 10.7498/aps.61.016106
    [14] Li Bin, Liu Hong-Xia, Yuan Bo, Li Jin, Lu Feng-Ming. Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [15] Qu Jiang-Tao, Wang Xiao-Yan, Zhang He-Ming, Wang Guan-Yu, Song Jian-Jun, Qin Shan-Shan. Drain-induced barrier-lowering effects on threshold voltage in short-channel strained Si metal-oxide semiconductor field transistor. Acta Physica Sinica, 2011, 60(2): 027102. doi: 10.7498/aps.60.027102
    [16] Zhou Hai-Liang, Zhang Min-Xuan, Fang Liang. Dual-gate-material-based device design for unipolar metal oxide semiconductor-like carbon nanotube field effect transistors. Acta Physica Sinica, 2010, 59(7): 5010-5017. doi: 10.7498/aps.59.5010
    [17] He Bao-Ping, Yao Zhi-Bin. Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment. Acta Physica Sinica, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] Bi Zhi-Wei, Feng Qian, Hao Yue, Yue Yuan-Zheng, Zhang Zhong-Fen, Mao Wei, Yang Li-Yuan, Hu Gui-Zhou. Effect of Al2O3 dielectric layer thickness on the AlGaN/GaN metal-oxide-semiconductor higher-electron-mobility transistor characteristics. Acta Physica Sinica, 2009, 58(10): 7211-7215. doi: 10.7498/aps.58.7211
    [19] Liu Yu-Rong, Wang Zhi-Xin, Yu Jia-Le, Xu Hai-Hong. High mobility polymer thin-film transistors. Acta Physica Sinica, 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [20] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
Metrics
  • Abstract views:  5092
  • PDF Downloads:  370
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2015
  • Accepted Date:  28 August 2015
  • Published Online:  05 October 2015

/

返回文章
返回