Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Influence of Co binding phase on adhesive strength of diamond coating with cemented carbide substrate

Jian Xiao-Gang Chen Jun

Citation:

The Influence of Co binding phase on adhesive strength of diamond coating with cemented carbide substrate

Jian Xiao-Gang, Chen Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diamond coating has many excellent properties as the same as those of the natural diamond, such as extreme hardness, high thermal conductivity, low thermal expansion coefficient, high chemical stability, and good abrasive resistance, which is considered as the best tool coating material applied to the high-silicon aluminum alloy cutting. We can use the hot filament chemical vapor deposition method (HFCVD) to deposit a 2–20 μm diamond coating on the cemented carbide tool to improve the cutting performance and increase the tool life significantly. Many experiments have proved that the existence of cobalt phase can weaken the adhesive strength of diamond coating. However, we still lack a perfect theory to explain why the Co element can reduce the adhesive strength of diamond coating is still lacking. What we can do now is only to improve the adhesive strength of diamond coating by doing testing many times in experiments. Compared with these traditional experiments, the first principles simulation based on quantum mechanics can describe the microstructure property and electron density of materials. It is successfully used to investigate the surface, interface, electron component, and so on etc. We can also use this method to study the interface problem at an atomic level. So the first principles based upon density functional theory (DFT) is used to investigate the influence of cobalt binding phase in cemented carbide substrate on adhesive strength of diamond coating. In this article, we uses Material Studios software to build WC/diamond and WC-Co/diamond interface models to evaluate the influence of cobalt phase on the adhesive strength of diamond coating with CASTEP program which can calculate the most stablest structure of film-substrate interface. We use PBE functional form to obtain the exchange potential and relevant potential, and to solve the self-consistent Kohn-Sham equations. We calculate the interfacial bonding energy, analyse the electron density of diamond coating and the bond Mulliken population of diamond film-substrate interface. The results show that the interfacial bonding energy of WC/diamond is 6.74 J/m2 and that of WC-Co/diamond is 5.94 J/m2, which implies that the adhesive strength of WC/diamond is better than that of WC-Co/diamond. We also find that Co element can transfer the charges near the interface of WC/diamond model when the magnetic Co element exists at the WC/diamond interface. As a result, the polarity of tungsten element in tungsten carbide and the polarity of carbon element in diamond coating near the interface turn to be identical polarity, and then the charge density of tungsten in cemented carbide changes from 0.430 e/A3 to 0.201 e/A3 and the charge density of Carbon in diamond changes from-0.045 e/A3 to 0.037 e/A3, and they exclude to each other, so the distance of interface becomes larger than that from the WC/diamond model, which changes from 2.069 Å to 3.649 Å. This can explain why the existence of Co element can weaken the adhesive strength of diamond coating. Meanwhile, Mulliken population analyses show that the bond strength of WC-Co /diamond at the interface is smaller than that of WC/diamond. So this can prove that the cobalt binding phase in cemented carbide substrate can weaken the adhesive strength of diamond coating, and then we need to do some pretreatments in order to reduce the cobalt binding phase in the cemented carbide substrate before depositing diamond coating.
      Corresponding author: Jian Xiao-Gang, jianxgg@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50605047, 51275358).
    [1]

    Jian X G, Shi L D, Chen M, Sun F H 2006 Diamond Relat. Mater. 15 313

    [2]

    Straffelini G, Scardi P, Molinari A, Polini R 2001 Wear. 249 1020

    [3]

    Shen B, Sun F H 2009 Diamond Relat. Mater. 18 238

    [4]

    Liu M N, Bian Y B, Zheng S J, Zhu T, Chen Y G, Chen Y L, Wang J S 2015 Thin Solid Films 584 165

    [5]

    Wang X C, Lin Z C, Shen B, Sun F H 2014 Trans. Nonferrous Met. Soc. China 24 3181

    [6]

    Wei Q P, Ashfold M N R, Mankelevich Y A, Yu Z M, Liu P Z, Ma L 2011 Diamond Relat. Mater. 20 641

    [7]

    Deng F M, Wang Q, Zou B, Zhang D, Lu S T, Zhao X K 2013 Cemented Carbide 30 113 (in Chinese) [邓福铭, 王 强, 邹 波, 张 丹, 陆绍悌, 赵晓凯 2013 硬质合金 30 113]

    [8]

    Wei Q P, Yu Z M, Ma L, Yang L, Liu W P, Xiao H 2008 Chin. J Nonferrous Met. 18 1070 (in Chinese) [魏秋平, 余志明, 马莉, 杨莉, 刘王平, 肖和 2008 中国有色金属学报 18 1070]

    [9]

    Li G, Zhao Y G, Zheng R, Ni J, Wu Y N 2015 Chin. Phy. B 24 087302

    [10]

    Meng F S, Li J H, Zhao X 2014 Acta Phys. Sin. 63 237102 (in Chinese) [孟凡顺, 李久会, 赵星 2014 物理学报 63 237102]

    [11]

    Li T F, Liu T M, Wei H M, Hussain S H, Miao B, Zeng W, Peng X H 2015 Comput. Mater. Sci. 105 83

    [12]

    Ullah M, Ahmed E, Hussain F, Rana A M, Raza R 2015 Appl. Surf. Sci. 334 40

    [13]

    Zhang L 2009 M. S. Dissertation (Jinan: Shangdong University) (in Chinese) [张路 2009 硕士学位论文(济南: 山东大学)]

    [14]

    Jian X G, Zhang Y H 2015 Acta Phys. Sin. 64 046701 (in Chinese) [简小刚, 张允华 2015 物理学报 64 046701]

    [15]

    Jian X G, Zhang Y H 2015 Diamond & Abrasives Engineering 34 23 (in Chinese) [简小刚, 张允华 2015 金刚石与磨料磨具工程 34 23]

    [16]

    Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1

    [17]

    Wang L L, Wan Q, Hu W J, Zhao X P 2010 Comput. Appl. Chem. 27 6 (in Chinese) [王丽莉, 万强, 胡文军, 赵晓平 2010 计算机与应用化学 27 6]

    [18]

    Chen B S, Li Y Z, Guan X Y, Wang C, Wang C X, Gao X Y 2015 Comput. Mater. Sci. 105 66

    [19]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics. 49 1

    [20]

    Tang J, Zhang G Y, Bao J S, Liu G L, Liu C M 2014 Acta Phys. Sin. 63 187101 (in Chinese) [唐杰, 张国英, 鲍君善, 刘贵立, 刘春明 2014 物理学报 63 187101]

    [21]

    Peng Y Z, Huo D X, He H P, Li Y, Li L W, Wang H W, Qian Z H 2012 Journal of Magn. Magn. Mater. 324 690

    [22]

    Pan J W, Li C, Zhao Y F, Liu R X, Gong Y Y, Niu L Y, Liu X J, Chi B Q 2015 Chem. Phy. Lett. 628 43

  • [1]

    Jian X G, Shi L D, Chen M, Sun F H 2006 Diamond Relat. Mater. 15 313

    [2]

    Straffelini G, Scardi P, Molinari A, Polini R 2001 Wear. 249 1020

    [3]

    Shen B, Sun F H 2009 Diamond Relat. Mater. 18 238

    [4]

    Liu M N, Bian Y B, Zheng S J, Zhu T, Chen Y G, Chen Y L, Wang J S 2015 Thin Solid Films 584 165

    [5]

    Wang X C, Lin Z C, Shen B, Sun F H 2014 Trans. Nonferrous Met. Soc. China 24 3181

    [6]

    Wei Q P, Ashfold M N R, Mankelevich Y A, Yu Z M, Liu P Z, Ma L 2011 Diamond Relat. Mater. 20 641

    [7]

    Deng F M, Wang Q, Zou B, Zhang D, Lu S T, Zhao X K 2013 Cemented Carbide 30 113 (in Chinese) [邓福铭, 王 强, 邹 波, 张 丹, 陆绍悌, 赵晓凯 2013 硬质合金 30 113]

    [8]

    Wei Q P, Yu Z M, Ma L, Yang L, Liu W P, Xiao H 2008 Chin. J Nonferrous Met. 18 1070 (in Chinese) [魏秋平, 余志明, 马莉, 杨莉, 刘王平, 肖和 2008 中国有色金属学报 18 1070]

    [9]

    Li G, Zhao Y G, Zheng R, Ni J, Wu Y N 2015 Chin. Phy. B 24 087302

    [10]

    Meng F S, Li J H, Zhao X 2014 Acta Phys. Sin. 63 237102 (in Chinese) [孟凡顺, 李久会, 赵星 2014 物理学报 63 237102]

    [11]

    Li T F, Liu T M, Wei H M, Hussain S H, Miao B, Zeng W, Peng X H 2015 Comput. Mater. Sci. 105 83

    [12]

    Ullah M, Ahmed E, Hussain F, Rana A M, Raza R 2015 Appl. Surf. Sci. 334 40

    [13]

    Zhang L 2009 M. S. Dissertation (Jinan: Shangdong University) (in Chinese) [张路 2009 硕士学位论文(济南: 山东大学)]

    [14]

    Jian X G, Zhang Y H 2015 Acta Phys. Sin. 64 046701 (in Chinese) [简小刚, 张允华 2015 物理学报 64 046701]

    [15]

    Jian X G, Zhang Y H 2015 Diamond & Abrasives Engineering 34 23 (in Chinese) [简小刚, 张允华 2015 金刚石与磨料磨具工程 34 23]

    [16]

    Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1

    [17]

    Wang L L, Wan Q, Hu W J, Zhao X P 2010 Comput. Appl. Chem. 27 6 (in Chinese) [王丽莉, 万强, 胡文军, 赵晓平 2010 计算机与应用化学 27 6]

    [18]

    Chen B S, Li Y Z, Guan X Y, Wang C, Wang C X, Gao X Y 2015 Comput. Mater. Sci. 105 66

    [19]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics. 49 1

    [20]

    Tang J, Zhang G Y, Bao J S, Liu G L, Liu C M 2014 Acta Phys. Sin. 63 187101 (in Chinese) [唐杰, 张国英, 鲍君善, 刘贵立, 刘春明 2014 物理学报 63 187101]

    [21]

    Peng Y Z, Huo D X, He H P, Li Y, Li L W, Wang H W, Qian Z H 2012 Journal of Magn. Magn. Mater. 324 690

    [22]

    Pan J W, Li C, Zhao Y F, Liu R X, Gong Y Y, Niu L Y, Liu X J, Chi B Q 2015 Chem. Phy. Lett. 628 43

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun. First-principles study of influence of Si on γ phase in Inconel 718 alloy. Acta Physica Sinica, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [3] Zhu Ping, Zhang Qiang, Gou Hua-Song, Wang Ping-Ping, Shao Pu-Zhen, Kobayashi Equo, Wu Gao-Hui. First-principles calculation of diamond/Al interface properties and study of interface reaction. Acta Physica Sinica, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [4] Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan. First-principles study of formation and performance of diamond (111)/Al interface. Acta Physica Sinica, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [5] Zhou Hong-Cai, Huang Shu-Lai, Li Gui-Xia, Yu Gui-Feng, Wang Juan, Bu Hong-Xia. First-principles prediction of carbon monoxide nanotube bundles in low pressure phase. Acta Physica Sinica, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [6] Yang Yan-Min, Li Jia, Ma Hong-Ran, Yang Guang, Mao Xiu-Juan, Li Cong-Cong. First-principles study of structure, electronic structure and thermoelectric properties for Co2-based Heusler alloys Co2FeAl1–xSix (x = 0.25, x = 0.5, x = 0.75). Acta Physica Sinica, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [7] Huang Can, Li Xiao-Ying, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Shi Da-Ning, Ma Chun-Lan. First principle study of weak Dzyaloshinsky-Moriya interaction in Co/BN surface. Acta Physica Sinica, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [8] Xiong Hui-Hui, Liu Zhao, Zhang Heng-Hua, Zhou Yang, Yu Yuan. First-principles calculation of influence of alloying elements on NbC heterogeneous nucleation in steel. Acta Physica Sinica, 2017, 66(16): 168101. doi: 10.7498/aps.66.168101
    [9] Xiong Hui-Hui, Zhang Hui-Ning. First-principles investigation on partitioning behavior of rare earth elements between α-Fe and Fe3C. Acta Physica Sinica, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [10] Wang Ying, Li Yong, Li Zong-Bao. First-principle studies of the electronic structures and optical properties of diamond crystal co-doped with B and N. Acta Physica Sinica, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [11] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [12] Jian Xiao-Gang, Zhang Yun-Hua. The effect of temperature on the mechanical properties of the diamond coating at the film-substrate interface. Acta Physica Sinica, 2015, 64(4): 046701. doi: 10.7498/aps.64.046701
    [13] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [14] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [15] Fan Kai-Min, Yang Li, Sun Qing-Qiang, Dai Yun-Ya, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles study on elastic properties of hexagonal phase ErAx (A=H, He). Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [16] Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong. First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y. Acta Physica Sinica, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [17] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [18] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] . Acta Physica Sinica, 2002, 51(2): 347-350. doi: 10.7498/aps.51.347
Metrics
  • Abstract views:  5744
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2015
  • Accepted Date:  05 September 2015
  • Published Online:  05 November 2015

/

返回文章
返回