Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation on the wetting characteristic of micro-droplet on surfaces with different free energies

Xu Wei Lan Zhong Peng Ben-Li Wen Rong-Fu Ma Xue-Hu

Citation:

Molecular dynamics simulation on the wetting characteristic of micro-droplet on surfaces with different free energies

Xu Wei, Lan Zhong, Peng Ben-Li, Wen Rong-Fu, Ma Xue-Hu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The wetting characteristic of micro-droplets on surfaces with different free energies is crucial to heterogeneous nucleation theory and the growth mechanism of micro-droplets during vapor condensation. In this paper, the spreading processes and wetting characteristics of nanoscale water droplets on various surfaces are explored by molecular dynamics simulation method. The surfaces are constructed from face centered cubic copper-like atoms with different Lennard-Jones potential parameters. The Lennard-Jones interaction energy well-depth of the surface atoms is adjusted to acquire different surface free energies, and the ratio of surface-water interaction energy well-depth to the water-water interaction energy well-depth is defined as the interaction intensity. In the present study, the relationship between interfacial free energies and solid-liquid interaction intensities is evaluated using molecular dynamics simulations. The wetting characteristics of TIP4P/2005 water droplets on surfaces with various free energies are simulated and analyzed as well, using molecular dynamics simulations under an NVT ensemble. Results indicate that the solid-liquid interfacial free energy increases as the solid-liquid interaction intensity increases, with different spreading processes and wetting characteristics achieved for the water droplets on these surfaces. For the surfaces with lower interaction intensities, water cannot spread on the solid surfaces and hydrophobic surfaces are obtained when the interaction intensity ratio between surface atoms and water molecules is lower than 1.6. As the interaction intensity increases, the surface translates from hydrophobic into hydrophilic, and finally into a complete wetting state as the interaction intensity reaches up to 3.5. Due to the limitation of nanoscale dimensions, the forces that exert on droplet surface are non-continuous and asymmetric. As a result, significant fluctuations of liquid-vapor interface and local solid-liquid contact line can be observed for the droplet in nanoscale. The transient contact angle of nano-droplets is also fluctuating within a certain range, which is different from that observed for macro-droplets. From the viewpoint of statistics, an apparent contact angle can be obtained for the droplet on each surface. The contact angle decreases with solid-liquid interaction intensities linearly, which is in accordance with the calculated results of classic Young's theory using the interfacial free energies obtained from molecular dynamics simulations. The fact that an apparent contact angle is already established for a droplet in nanoscale, supporting the capillary assumption that is widely adopted in classic nucleation theory. The fluctuation of liquid-vapor interface and contact angle also provides a qualitative explanation for the discrepancy between experimental nucleation rates and predictions in classic nucleation theory.
      Corresponding author: Ma Xue-Hu, xuehuma@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51236002, 51476018).
    [1]

    Wenzel R N 1936 Industrial and Engineering Chemistry 28 988

    [2]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [3]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [4]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [5]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [6]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [7]

    Cui S W, Zhu R Z, Wei J A, Yang H X, Xu S H, Sun Z W 2015 Acta Phys. Sin. 64 116802 (in Chinese) [崔树稳, 朱如曾, 魏久安, 杨洪秀, 徐升华, 孙祉伟 2015 物理学报 64 116802]

    [8]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 RSC Adv. 5 812

    [9]

    Zang D Y, Lin K J, Wang W K, Gu Y X, Zhang Y J, Geng X G, Binks B P 2014 Soft Matter 10 1309

    [10]

    Volmer M, Weber A 1926 Z. Phys. Chem. 119 277

    [11]

    Fisher J C, Hollomon J H, Turnbull D 1948 J. Appl. Phys. 19 775

    [12]

    Laaksonen A, Ford I J, Kulmala M 1994 Phys. Rev. E 49 5517

    [13]

    Talanquer V, Oxtoby D W 1995 Physica A 220 74

    [14]

    Kashchiev D 2000 Nucleation: Basic Theory with Applications (Burlington: Butterworth-Heinemann) p32

    [15]

    Carey V P 2008 Liquid-vapor Phase-Change Phenomena (New York: Taylor and Francis)

    [16]

    Abyzov A S, Schmelzer J W P 2013 J. Chem. Phys. 138 164504

    [17]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2014 RSC Adv. 4 31692

    [18]

    Jian Z Y, Gao A H, Chang F E, Tang B B, Zhang L, Li N 2013 Acta Phys. Sin. 62 056102 (in Chinese) [坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜 2013 物理学报 62 056102]

    [19]

    Wang J Z, Chen M, Guo Z Y 2003 Chinese Science Bulletin 48 623

    [20]

    Tsuruta T, Tanaka H, Masuoka T 1999 Int. J. Heat Mass Tran. 42 4107

    [21]

    Tsuruta T, Nagayama G 2005 Energy 30 795

    [22]

    Yang T H, Pan C 2005 Int. J. Heat Mass Tran. 48 3516

    [23]

    Tanaka K K, Kawano A, Tanaka H 2014 J. Chem. Phys. 140 114302

    [24]

    Merikanto J, Vehkamäki H, Zapadinsky E 2004 J. Chem. Phys. 121 914

    [25]

    Diemand J, Angélil R, Tanaka K K, Tanaka H 2013 J. Chem. Phys. 139 074309

    [26]

    Ge S, Chen M 2013 Acta Phys. Sin. 62 110204 (in Chinese) [葛宋, 陈民 2013 物理学报 62 110204]

    [27]

    Khan S, Singh J K 2014 Molecular Simulation 40 458

    [28]

    Niu D, Tang G H 2014 Int. J. Heat Mass Tran. 79 647

    [29]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702

    [30]

    Zhang M K, Chen S, Shang Z 2012 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2012 物理学报 61 034701]

    [31]

    Toxvaerd S 2002 J. Chem. Phys. 117 10303

    [32]

    Abascal J L F, Vega C 2005 J. Chem. Phys. 123 234505

    [33]

    Vega C, Abascal J L F, Conde M M, Aragones J L 2009 Faraday Discuss. 141 251

    [34]

    Heinz H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. C 112 17281

    [35]

    Allen M P, Tildesley D J 1987 Computer simulation of liquids (Oxford: Clarendon Press) p20

    [36]

    Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 Journal of Computational Chemistry 26 1781

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics 14 33

    [38]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [39]

    Osman M A, Keller B A 1996 Appl. Surf. Sci. 99 261

    [40]

    Angélil R, Diemand J, Tanaka K K, Tanaka H 2014 J. Chem. Phys. 140 074303

    [41]

    Pérez A, Rubio A 2011 J. Chem. Phys. 135 244505

    [42]

    Boda D, Henderson D 2008 Mol. Phys. 106 2367

    [43]

    Gunton J D 1999 Journal of Statistical Physics 95 903

  • [1]

    Wenzel R N 1936 Industrial and Engineering Chemistry 28 988

    [2]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [3]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [4]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [5]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [6]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [7]

    Cui S W, Zhu R Z, Wei J A, Yang H X, Xu S H, Sun Z W 2015 Acta Phys. Sin. 64 116802 (in Chinese) [崔树稳, 朱如曾, 魏久安, 杨洪秀, 徐升华, 孙祉伟 2015 物理学报 64 116802]

    [8]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 RSC Adv. 5 812

    [9]

    Zang D Y, Lin K J, Wang W K, Gu Y X, Zhang Y J, Geng X G, Binks B P 2014 Soft Matter 10 1309

    [10]

    Volmer M, Weber A 1926 Z. Phys. Chem. 119 277

    [11]

    Fisher J C, Hollomon J H, Turnbull D 1948 J. Appl. Phys. 19 775

    [12]

    Laaksonen A, Ford I J, Kulmala M 1994 Phys. Rev. E 49 5517

    [13]

    Talanquer V, Oxtoby D W 1995 Physica A 220 74

    [14]

    Kashchiev D 2000 Nucleation: Basic Theory with Applications (Burlington: Butterworth-Heinemann) p32

    [15]

    Carey V P 2008 Liquid-vapor Phase-Change Phenomena (New York: Taylor and Francis)

    [16]

    Abyzov A S, Schmelzer J W P 2013 J. Chem. Phys. 138 164504

    [17]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2014 RSC Adv. 4 31692

    [18]

    Jian Z Y, Gao A H, Chang F E, Tang B B, Zhang L, Li N 2013 Acta Phys. Sin. 62 056102 (in Chinese) [坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜 2013 物理学报 62 056102]

    [19]

    Wang J Z, Chen M, Guo Z Y 2003 Chinese Science Bulletin 48 623

    [20]

    Tsuruta T, Tanaka H, Masuoka T 1999 Int. J. Heat Mass Tran. 42 4107

    [21]

    Tsuruta T, Nagayama G 2005 Energy 30 795

    [22]

    Yang T H, Pan C 2005 Int. J. Heat Mass Tran. 48 3516

    [23]

    Tanaka K K, Kawano A, Tanaka H 2014 J. Chem. Phys. 140 114302

    [24]

    Merikanto J, Vehkamäki H, Zapadinsky E 2004 J. Chem. Phys. 121 914

    [25]

    Diemand J, Angélil R, Tanaka K K, Tanaka H 2013 J. Chem. Phys. 139 074309

    [26]

    Ge S, Chen M 2013 Acta Phys. Sin. 62 110204 (in Chinese) [葛宋, 陈民 2013 物理学报 62 110204]

    [27]

    Khan S, Singh J K 2014 Molecular Simulation 40 458

    [28]

    Niu D, Tang G H 2014 Int. J. Heat Mass Tran. 79 647

    [29]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702

    [30]

    Zhang M K, Chen S, Shang Z 2012 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2012 物理学报 61 034701]

    [31]

    Toxvaerd S 2002 J. Chem. Phys. 117 10303

    [32]

    Abascal J L F, Vega C 2005 J. Chem. Phys. 123 234505

    [33]

    Vega C, Abascal J L F, Conde M M, Aragones J L 2009 Faraday Discuss. 141 251

    [34]

    Heinz H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. C 112 17281

    [35]

    Allen M P, Tildesley D J 1987 Computer simulation of liquids (Oxford: Clarendon Press) p20

    [36]

    Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 Journal of Computational Chemistry 26 1781

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics 14 33

    [38]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [39]

    Osman M A, Keller B A 1996 Appl. Surf. Sci. 99 261

    [40]

    Angélil R, Diemand J, Tanaka K K, Tanaka H 2014 J. Chem. Phys. 140 074303

    [41]

    Pérez A, Rubio A 2011 J. Chem. Phys. 135 244505

    [42]

    Boda D, Henderson D 2008 Mol. Phys. 106 2367

    [43]

    Gunton J D 1999 Journal of Statistical Physics 95 903

  • [1] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] Wei Guo-Cui, Tian Ze-An. Molecular dynamics simulation of rapid solidification of Cu64Zr36 nanodrops of different sizes. Acta Physica Sinica, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [3] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [4] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [5] Sun Chuan-Qin, Huang Hai-Shen, Bi Qing-Ling, Lü Yong-Jun. Wetting kinetics of water droplets on the metallic glass. Acta Physica Sinica, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [6] Zhao Bo-Wen, Shang Hai-Long, Chen Fan, Shi Kai-Cheng, Li Rong-Bin, Li Ge-Yang. Wetting and brazing of AlN by sputtered Al. Acta Physica Sinica, 2016, 65(8): 086801. doi: 10.7498/aps.65.086801
    [7] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [8] Si Li-Na, Wang Xiao-Li. A molecular dynamics study on adhesive contact processes of surfaces with nanogrooves. Acta Physica Sinica, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [9] Liu Tian-Qing, Sun Wei, Li Xiang-Qin, Sun Xiang-Yu, Ai Hong-Ru. A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces. Acta Physica Sinica, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [10] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [12] Jiang Tao, Lu Lin-Guang, Lu Wei-Gang. Numerical study of collision process between two equal diameter liquid micro-droplets using a modified smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [13] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [14] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [15] Meng Li-Juan, Li Rong-Wu, Liu Shao-Jun, Sun Jun-Dong. Molecular dynamics simulation of heterogeneous adatom diffusion on Cu(001) surface. Acta Physica Sinica, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [16] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [17] Chang Jian-Zhong, Liu Mou-Bin, Liu Han-Tao. Simulation of multiphase micro-drop dynamics using dissipative particle dynamics. Acta Physica Sinica, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [18] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] Zhang Chao, Tang Xin, Wang Yong-Liang, Zhang Qing-Yu. Study on the influence of substitutional impurity on the stability of noble metal (111) surfaces by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
Metrics
  • Abstract views:  7485
  • PDF Downloads:  516
  • Cited By: 0
Publishing process
  • Received Date:  17 November 2014
  • Accepted Date:  02 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回