Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system

Yang Xian-Jie Chen Jian-Jun Xia Guang-Qiong Wu Jia-Gui Wu Zheng-Mao

Citation:

Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system

Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The time-delay signature (TDS) and the bandwidth (BW) are two important performance indexes to assess the chaos signal from a delayed laser system. Based on the spin flip model of vertical-cavity surface-emitting laser (VCSEL), we numerically investigate the characteristics of chaos dynamics in a master-slave VCSEL system, where a chaotic signal generated by a master VCSEL (M-VCSEL) under external optical feedback is unidirectionally injected into a slave VCSEL (S-VCSEL). The influences of injection strength, frequency detuning between M-VCSEL and S-VCSEL, and feedback strength of M-VCSEL on chaos TDS (including intensity TDS (I-TDS) and phase TDS (P-TDS)) and BW are investigated. The results show that by adjusting the injection strength and the frequency detuning, both I-TDS and P-TDS of two polarization components (referred to as X-PC and Y-PC respectively) of the chaotic output from the system can be suppressed simultaneously. Through further analyzing the influences of the injection strength and frequency detuning on the BW of chaotic signal, we find that the BWs of both X-PC and Y-PC of chaotic outputs can simultaneously exceed 30 GHz within a large negative frequency detuning range. Furthermore, by combining the evolution characteristics of the TDS and BW of chaotic outputs in the parameter space of injection strength and frequency detuning, the parameter region for generating the chaotic signals with wide BW and low TDS can be determined. In addition, by reasonably adjusting feedback strength, the quality of chaotic signal from the system can be further optimized.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178011, 61275116, 61475127, 11474233, 61575163), the Foundation of Chongqing College Key Young Teachers, China (Grant No. 102060-20600512), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2013B037).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Yan S L 2014 Chin. Phys. B 23 090503

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki S, Yoshimori M, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kantar I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Ohtsubo J 2013 Semiconductor Lasers: Stability, Instability and -Chaos (3rd Ed.) (Berlin: Springer) p26

    [7]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [8]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [9]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54

    [13]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [14]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [15]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332

    [16]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Sande G V 2012 Opt. Lett. 37 2541

    [18]

    Xiang S Y, Pan W, Zhang L Y, Wen A J, Shang L, Zhang H X, Lin L 2014 Opt. Commun. 324 38

    [19]

    Priyadarshi S, Hong Y H, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707

    [20]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [21]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [22]

    Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709

    [23]

    Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322

    [24]

    Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [25]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [26]

    Wang Y C, Zhang G W, Wang A B 2007 Opt. Commun. 277 156

    [27]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [28]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [29]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [30]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [31]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [33]

    Kingni S T, Talla Mb J H, Woafo P 2012 Eur. Phys. J. Plus 127 46

    [34]

    Vicente R, Mirasso C R 2004 Proc. SPIE 5349 331

    [35]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [36]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [37]

    Yang X J, Wu J G, Wu Z M, Li Y, Wang L, Xia G Q 2015 Opt. Commun. 336 262

    [38]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [39]

    Tkach R W, Chraplyvy A R 1986 J. Lightwave Technol. 4 1655

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Yan S L 2014 Chin. Phys. B 23 090503

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki S, Yoshimori M, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kantar I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Ohtsubo J 2013 Semiconductor Lasers: Stability, Instability and -Chaos (3rd Ed.) (Berlin: Springer) p26

    [7]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [8]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [9]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54

    [13]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [14]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [15]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332

    [16]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Sande G V 2012 Opt. Lett. 37 2541

    [18]

    Xiang S Y, Pan W, Zhang L Y, Wen A J, Shang L, Zhang H X, Lin L 2014 Opt. Commun. 324 38

    [19]

    Priyadarshi S, Hong Y H, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707

    [20]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [21]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [22]

    Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709

    [23]

    Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322

    [24]

    Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [25]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [26]

    Wang Y C, Zhang G W, Wang A B 2007 Opt. Commun. 277 156

    [27]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [28]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [29]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [30]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [31]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [33]

    Kingni S T, Talla Mb J H, Woafo P 2012 Eur. Phys. J. Plus 127 46

    [34]

    Vicente R, Mirasso C R 2004 Proc. SPIE 5349 331

    [35]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [36]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [37]

    Yang X J, Wu J G, Wu Z M, Li Y, Wang L, Xia G Q 2015 Opt. Commun. 336 262

    [38]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [39]

    Tkach R W, Chraplyvy A R 1986 J. Lightwave Technol. 4 1655

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Pang Shuang, Feng Yu-Ling, Yu Ping, Yao Zhi-Hai. Chaotic characteristics of output light from semiconductor laser with self-chaotic phase modulation and optical feedback. Acta Physica Sinica, 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [3] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [4] Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser. Acta Physica Sinica, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [5] Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao. Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser. Acta Physica Sinica, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [6] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [7] Yang Feng, Tang Xi, Zhong Zhu-Qiang, Xia Guang-Qiong, Wu Zheng-Mao. Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [8] Guan Bao-Lu, Liu Xin, Jiang Xiao-Wei, Liu Chu, Xu Chen. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser. Acta Physica Sinica, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [9] Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan. Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection. Acta Physica Sinica, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [10] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [11] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [12] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [13] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [14] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [15] Yang Ling-Zhen, Qiao Zhan-Duo, Wu Yun-Qiao, Wang Yun-Cai. Study of chaotic bandwidth in erbium-doped ring fiber laser. Acta Physica Sinica, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [16] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [17] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
Metrics
  • Abstract views:  4709
  • PDF Downloads:  276
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2015
  • Accepted Date:  02 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回