Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision measurement of single-atom trajectories in higher-order Laguerre-Gaussian transverse modes of a Fabry-Perot cavity

Wang Yan-Na Zhao Di Fang Ai-Ping Jiang Chen-Wei Gao Shao-Yan Li Fu-Li

Citation:

Precision measurement of single-atom trajectories in higher-order Laguerre-Gaussian transverse modes of a Fabry-Perot cavity

Wang Yan-Na, Zhao Di, Fang Ai-Ping, Jiang Chen-Wei, Gao Shao-Yan, Li Fu-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A coupled quantum system composed of cavity field and atoms is one of the main research contents of cavity quantum electrodynamics. It can be used to realize single atom manipulation and measurement, and has important significance for studying the interaction between light and the atom, preparing quantum states and quantum entanglement. Current research work mainly focuses on two aspects. One is to achieve the atom trapping via the feedback control of the trapping laser intensity. The other is to measure the single atomic motion in a Fabry-Perot cavity by using Hermite-Gaussian transverse modes. The detection of the atomic trajectories has been realized via the observation of transmission spectra of the strong coupling system composed of cold atoms and Hermite-Gaussian transverse modes in a Fabry-Perot cavity. In order to observe the atomic motion trajectories in the cavity, we theoretically study the transmission spectrum of a strong coupling system composed of cold atoms and Laguerre-Gaussian transverse modes in a Fabry-Perot cavity in this paper. We calculate the relationship between the coupling coefficient and the mode number of Laguerre-Gaussian transverse modes. The result shows that with the increase of Laguerre-Gaussian transverse mode number, the maximum coupling coefficient between the atoms and cavity fields is almost unchanged, so the contrast of the detected spectrum is nearly independent of the mode number. Analysis shows that Laguerre-Gaussian transverse mode provides more abundant information about atomic motion trajectory than Hermite-Gaussian transverse mode. The field distribution of Laguerre-Gaussian transverse mode is ring-shaped. Owing to the ring shape, the atoms dropped at different positions experience different electric field intensities, and the detected transmission spectra are changed. Therefore, we can implement the high precision distinguishment of the atomic trajectories by observing the features of the transmission spectra such as the number of the transmission peaks and their positions. Furthermore, a small deviation of the atomic motion trajectories, on the edges of the rings of the electric field, may induce great change in transmission spectrum, and then we can very accurately detect the atomic motion around these positions.
    [1]

    McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992

    [2]

    Mcke M, Bochmann J, Hahn C, Neuzner A, Nlleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805

    [3]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901

    [4]

    Kimble H J 2003 Phys. Rev. Lett. 90 249801

    [5]

    Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253

    [6]

    Kimble H J 2008 Nature 453 1023

    [7]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488

    [8]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987

    [9]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551

    [10]

    Lynn T W, Birnbaum K, Kimble H J 2005 J. Opt. B 7 S215

    [11]

    Fischer T, Maunz P, Pinkse P W H, Puppe T, Rempe G 2002 Phys. Rev. Lett. 88 163002

    [12]

    Puppe T, Schuster T, Grothe A, Kubanek A, Murr K, Pinkse P W H, Rempe G 2007 Phys. Rev. Lett. 99 013002

    [13]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K, Rempe G 2009 Nature 462 898

    [14]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H, Rempe G 2011 Appl. Phys. B 102 433

    [15]

    Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]

    [16]

    Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 014205

    [17]

    Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393

    [18]

    Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157

    [19]

    Kimble H J 1998 Phys. Scr. T76 127

    [20]

    Puppe T, Maunz P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7

    [21]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 044203

    [22]

    Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804(R)

    [23]

    Li W F, Du J J, Wen R J, Zhang P F, Li G, Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese) [李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才 2014 物理学报 63 244205]

    [24]

    Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front Phys. 7 435

    [25]

    Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 103 083117

    [26]

    Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203]

    [27]

    Kotlyar V V, Khonina S N, Almazov A A, Soifer V A, Jefimovs K, Turunen J 2006 J. Opt. Soc. Am. A 23 43

  • [1]

    McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992

    [2]

    Mcke M, Bochmann J, Hahn C, Neuzner A, Nlleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805

    [3]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901

    [4]

    Kimble H J 2003 Phys. Rev. Lett. 90 249801

    [5]

    Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253

    [6]

    Kimble H J 2008 Nature 453 1023

    [7]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488

    [8]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987

    [9]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551

    [10]

    Lynn T W, Birnbaum K, Kimble H J 2005 J. Opt. B 7 S215

    [11]

    Fischer T, Maunz P, Pinkse P W H, Puppe T, Rempe G 2002 Phys. Rev. Lett. 88 163002

    [12]

    Puppe T, Schuster T, Grothe A, Kubanek A, Murr K, Pinkse P W H, Rempe G 2007 Phys. Rev. Lett. 99 013002

    [13]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K, Rempe G 2009 Nature 462 898

    [14]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H, Rempe G 2011 Appl. Phys. B 102 433

    [15]

    Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]

    [16]

    Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 014205

    [17]

    Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393

    [18]

    Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157

    [19]

    Kimble H J 1998 Phys. Scr. T76 127

    [20]

    Puppe T, Maunz P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7

    [21]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 044203

    [22]

    Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804(R)

    [23]

    Li W F, Du J J, Wen R J, Zhang P F, Li G, Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese) [李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才 2014 物理学报 63 244205]

    [24]

    Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front Phys. 7 435

    [25]

    Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 103 083117

    [26]

    Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203]

    [27]

    Kotlyar V V, Khonina S N, Almazov A A, Soifer V A, Jefimovs K, Turunen J 2006 J. Opt. Soc. Am. A 23 43

  • [1] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] Jin Xing, Xiao Shen-Yu, Gong Qi-Huang, Yang Qi-Fan. Generation, development, and application of microcombs. Acta Physica Sinica, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] Liu Jun-Jie, Sheng Quan, Wang Meng, Zhang Jun-Xiang, Geng Xing-Ning, Shi Zheng, Wang Ai-Hua, Shi Wei, Yao Jian-Quan. High-order Laguerre-Gaussian mode laser generated based on spherical aberration cavity. Acta Physica Sinica, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [4] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [5] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [6] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [7] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [8] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [9] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [10] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [11] Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min. Theoretical analysis of new optical microcavity. Acta Physica Sinica, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [12] Zhao Rui-Tong, Liang Rui-Sheng, Wang Fa-Qiang. Quantum entanglement concentration for photonic polarization state assisted by electron spin. Acta Physica Sinica, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [13] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [14] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [15] Du Jin-Jin, Li Wen-Fang, Wen Rui-Juan, Li Gang, Zhang Tian-Cai. Precision measurement of resonate frequency and the effective cavity length of the high finesse optical micro-cavity. Acta Physica Sinica, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [16] Ding Pan-Feng, Pu Ji-Xiong. Propagation of Laguerre-Gaussian vortex beam. Acta Physica Sinica, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [17] Chen Xiao-Yi, Li Hai-Xia, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu, Liu Man. Measurement of orbital angular momentum of Laguerre-Gaussian beam by using phase vortices of interference fields. Acta Physica Sinica, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [18] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [19] Liu Pu-Sheng, Lü Bai-Da. Coherence vortices in partially coherent beams consisting of a superposition of Laguerre-Gaussian modes. Acta Physica Sinica, 2007, 56(5): 2623-2628. doi: 10.7498/aps.56.2623
    [20] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
Metrics
  • Abstract views:  4784
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2015
  • Accepted Date:  18 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回