Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite difference time domain simulation of optical properties of annular cavity arrays

Zhou Jing Wang Ming Ni Hai-Bin Ma Xin

Citation:

Finite difference time domain simulation of optical properties of annular cavity arrays

Zhou Jing, Wang Ming, Ni Hai-Bin, Ma Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical properties of two-dimensional periodic annular cavity arrays in hexagonal packing are investigated by finite difference time domain simulation method in this paper. According to simulated reflectance/transmission spectra, electric field distribution and charge distribution, we confirm that multiple cylindrical surface plasmon resonances, which result in reflectance dips, can be excited in annular cavities by linearly polarized light. Mechanism of the cylindrical surface plasmons is investigated. A coaxial waveguide mode TE11 is excited in the annular cavities and a Fabry-Perot resonance is fulfilled along the depth direction of the annular cavities at the resonance wavelengths. While the number of reflectance dips and wavelengths of these dips in reflectance spectra are dependent on the geometric sizes of the annular cavities, the periodicity and polarization of incident light do not affect their reflectance spectra dramatically. Incident light beams with resonant wavelengths are localized in annular cavities with large electric field increasing and dissipate gradually due to metal loss. Reflectance dips can be tuned from 350 to 2000 nm by adjusting geometric size parameters of the annular cavities, such as outer and inner radii of the annular gaps, gap sizes and metal film thickness values. Reflectance dips shift toward longer wavelength with increasing inner and outer radii of the annular gaps, metal film thickness and with reducing the gap distance. In addition, infiltrate liquids in the annular gaps will result in a shift of the resonance wavelengths, which makes the annular cavities good refractive index sensors. A refractive index sensitivity up to 1850 nm/RIU is demonstrated. The refractive index sensitivities of annular cavities can also be tuned by their geometric sizes. Annular cavities with large electric field enhancement and tunable cylindrical surface plasmons can be used as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers and optical trappers.
      Corresponding author: Wang Ming, wangming@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the University Postgraduate Research and Innovation Project of Jiangsu Province, China (Grant No. KYLX_0723), and the Jiangsu Province Prospective Joint Research Project, China (Grant No. BE2008138).
    [1]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotech. 8 784

    [2]

    Hao F, Nordlander P 2007 Phys. Rev. B 76 245417

    [3]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [4]

    Nordlander P, Prodan E 2004 Nano. Lett. 4 899

    [5]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442

    [6]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [7]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B: Chem. 54 3

    [8]

    Subramania G, Foteinopoulou S, Brener I 2011 Phys. Rev. Lett. 107 163902

    [9]

    Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese) [罗松, 付统, 张中月 2013 物理学报 62 147303]

    [10]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [11]

    Zhu J, Ren Y J 2013 Appl. Surf. Sci. 285 649

    [12]

    Heo C J, Kim S H, Jang S G, Lee S Y, Yang S M 2013 Adv. Mater. 21 1726

    [13]

    Huang F M, Wilding D, Speed J D, Russell A E, Bartlett P N, Baumberg J J 2011 Nano. Lett. 11 1221

    [14]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [15]

    Ren W Z, Dai Y M, Cai H B, Ding H Y, Pan N, Wang X P 2013 Opt. Express 21 10251

    [16]

    Chris K J 2002 Neuroscience 22 639

    [17]

    Zhang X M, Xiao J J, Zhang Q 2014 Chin. Phys. B 23 017302

    [18]

    Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 物理学报 62 178502]

    [19]

    Heshmat B, Li D 2011 Opt. Express 19 5912

    [20]

    Ge D B, Yan Y B 2002 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法 (第3版) (西安:西安电子科技大学出版社) 第25页]

    [21]

    Ni H B, Wang M, Shen T Y, Zhou J 2015 ACS Nano 9 1913

    [22]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (1st Ed.) (Jilin: Jilin University Press) (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(第1版) (吉林:吉林电子科技大学出版社) 第305页]

    [23]

    Haftel M I, Schlockermann C, Blumberg G 2006 Phys. Rev. B 74 235405

  • [1]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotech. 8 784

    [2]

    Hao F, Nordlander P 2007 Phys. Rev. B 76 245417

    [3]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [4]

    Nordlander P, Prodan E 2004 Nano. Lett. 4 899

    [5]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442

    [6]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [7]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B: Chem. 54 3

    [8]

    Subramania G, Foteinopoulou S, Brener I 2011 Phys. Rev. Lett. 107 163902

    [9]

    Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese) [罗松, 付统, 张中月 2013 物理学报 62 147303]

    [10]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [11]

    Zhu J, Ren Y J 2013 Appl. Surf. Sci. 285 649

    [12]

    Heo C J, Kim S H, Jang S G, Lee S Y, Yang S M 2013 Adv. Mater. 21 1726

    [13]

    Huang F M, Wilding D, Speed J D, Russell A E, Bartlett P N, Baumberg J J 2011 Nano. Lett. 11 1221

    [14]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [15]

    Ren W Z, Dai Y M, Cai H B, Ding H Y, Pan N, Wang X P 2013 Opt. Express 21 10251

    [16]

    Chris K J 2002 Neuroscience 22 639

    [17]

    Zhang X M, Xiao J J, Zhang Q 2014 Chin. Phys. B 23 017302

    [18]

    Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 物理学报 62 178502]

    [19]

    Heshmat B, Li D 2011 Opt. Express 19 5912

    [20]

    Ge D B, Yan Y B 2002 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法 (第3版) (西安:西安电子科技大学出版社) 第25页]

    [21]

    Ni H B, Wang M, Shen T Y, Zhou J 2015 ACS Nano 9 1913

    [22]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (1st Ed.) (Jilin: Jilin University Press) (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(第1版) (吉林:吉林电子科技大学出版社) 第305页]

    [23]

    Haftel M I, Schlockermann C, Blumberg G 2006 Phys. Rev. B 74 235405

Metrics
  • Abstract views:  6254
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2015
  • Accepted Date:  31 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回