Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center

Wu Xiang-Lian Zhao Ke Jia Hai-Hong Wang Fu-Qing

Citation:

Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center

Wu Xiang-Lian, Zhao Ke, Jia Hai-Hong, Wang Fu-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same computational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sections are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a triphenylamine group has the largest cross-section due to its strong donor groups. The divinyl sulfones-based dyes have larger cross-sections than the corresponding sulfides-based ones, because divinyl sulfones have stronger capability to accept electrons and at the same time the torsional angles between benzene rings in sulfones-based molecules are smaller than in the sulfides-based molecules. In the applicable wavelength range, these new dyes exhibit large two-photon absorption cross-sections which have the same order of magnitude as the strong two-photon absorption molecules with similar conjugation length. The largest cross section comes to 1613.3 GM calculated by using 6-31g(d) basis set. Molecular orbitals involved in the strongest two-photon absorption excitations are plotted and the charge transfer process is analyzed at length. The divinyl sulfide and sulfone centers behave as electron withdrawing groups and can form effective charge transfer molecules. On the basis of these new molecules, the structure inducing two-photon absorption enhancement is designed by employing isomerism effect. When the benzene rings of carbazole groups are connected with the molecular center, the planarity and charge transfer intensity are increased, and then the two-photon absorption cross-section can be improved dramatically. This study provides theoretical guidelines for the synthesis of new type of active two-photon absorption materials.
      Corresponding author: Zhao Ke, zhaoke@sdnu.edu.cn
    • Funds: Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM026), and the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J14LJ01).
    [1]

    Göppert-Mayer M 1931 Ann. Phys. 401 273

    [2]

    Kaiser W, Garret C G B 1961 Phys. Rev. Lett. 7 229

    [3]

    Helmchen F, Denk W 2005 Nat. Methods 2 932

    [4]

    Spangler C W 1999 J. Mater. Chem. 9 2013

    [5]

    Brown S B, Brown E A, Walker I 2004 Lancet Oncol. 5 497

    [6]

    Walker E, Rentzepis P M 2008 Nat. Photonics 2 406

    [7]

    Liu Z, Cao D, Chen Y, Fang Q 2010 Dyes Pigm. 86 63

    [8]

    Charlot M, Porrès L, Entwistle C D, Beeby A, Marder T B, Blanchard-Desce M 2005 Phys. Chem. Chem. Phys. 7 600

    [9]

    Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H, Zhang H Z 2013 Opt. Mater. 35 467

    [10]

    Kim H M, Cho B R 2009 Chem. Commun. 153

    [11]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrés L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024

    [12]

    Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O, Ogilby P R 2007 J. Am. Chem. Soc. 129 5188

    [13]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244

    [14]

    Norman P, Macak P, Luo Y, Ågren H 1999 J. Chem. Phys. 110 7960

    [15]

    Macak P, Norman P, Luo Y, Ågren H 2000 J. Chem. Phys. 112 1868

    [16]

    Zhao B, Qi T L 2001 Acta Phys. Sin. 50 1699 (in Chinese) [赵波, 祁铁流 2001 物理学报 50 1699]

    [17]

    Wang C K, Zhang Z, Ding M C, Li X J, Sun Y H, Zhao K 2010 Chin. Phys. B 19 103304

    [18]

    Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵珂, 孙元红, 王传奎, 罗毅, 张献, 于小强, 蒋民华 2005 物理学报 54 2662]

    [19]

    Liu P W, Zhao K, Han G C 2011 Chem. Phys. Lett. 514 226

    [20]

    Han G C, Zhao K, Liu P W, Zhang L L 2012 Chin. Phys. B 21 118201

    [21]

    Jia H H, Zhao K, Wu X L 2014 Chem. Phys. Lett. 612 151

    [22]

    Monçalves M, Rampon D S, Schneider P H, Rodembusch F S, Silveira C C 2014 Dyes Pigm. 102 71

    [23]

    Das S K, Lim C S, Yang S Y, Han J H, Cho B R 2012 Chem. Commun. 48 8395

    [24]

    Huang Z L, Lei H, Li N, Qiu Z R, Wang H Z, Guo J D, Luo Y, Zhong Z P, Liu X F, Zhou Z H 2003 J. Mater. Chem. 13 708

    [25]

    Lee H J, Sohn J, Hwang J, Park S Y, Choi H, Cha M 2004 Chem. Mater. 16 456

    [26]

    Yao S, Ahn H Y, Wang X, Fu J, Van Stryland E W, Hagan D J, Belfield K D 2010 J. Org. Chem. 75 3965

    [27]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718

    [28]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814

    [29]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235

    [30]

    Monson P R, McClain W M 1970 J. Chem. Phys. 53 29

    [31]

    Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 11310271

    [32]

    Zhao K, Ferrighi L, Frediani L, Wang C K, Luo Y 2007 J. Chem. Phys. 126 204509

    [33]

    Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade A M, Majoral J P, Blanchard-Desce M 2009 Angew. Chem. Int. Ed. 48 8691

    [34]

    Zhao K, Luo Y 2010 J. Phys. Chem. B 114 13167

  • [1]

    Göppert-Mayer M 1931 Ann. Phys. 401 273

    [2]

    Kaiser W, Garret C G B 1961 Phys. Rev. Lett. 7 229

    [3]

    Helmchen F, Denk W 2005 Nat. Methods 2 932

    [4]

    Spangler C W 1999 J. Mater. Chem. 9 2013

    [5]

    Brown S B, Brown E A, Walker I 2004 Lancet Oncol. 5 497

    [6]

    Walker E, Rentzepis P M 2008 Nat. Photonics 2 406

    [7]

    Liu Z, Cao D, Chen Y, Fang Q 2010 Dyes Pigm. 86 63

    [8]

    Charlot M, Porrès L, Entwistle C D, Beeby A, Marder T B, Blanchard-Desce M 2005 Phys. Chem. Chem. Phys. 7 600

    [9]

    Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H, Zhang H Z 2013 Opt. Mater. 35 467

    [10]

    Kim H M, Cho B R 2009 Chem. Commun. 153

    [11]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrés L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024

    [12]

    Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O, Ogilby P R 2007 J. Am. Chem. Soc. 129 5188

    [13]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244

    [14]

    Norman P, Macak P, Luo Y, Ågren H 1999 J. Chem. Phys. 110 7960

    [15]

    Macak P, Norman P, Luo Y, Ågren H 2000 J. Chem. Phys. 112 1868

    [16]

    Zhao B, Qi T L 2001 Acta Phys. Sin. 50 1699 (in Chinese) [赵波, 祁铁流 2001 物理学报 50 1699]

    [17]

    Wang C K, Zhang Z, Ding M C, Li X J, Sun Y H, Zhao K 2010 Chin. Phys. B 19 103304

    [18]

    Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵珂, 孙元红, 王传奎, 罗毅, 张献, 于小强, 蒋民华 2005 物理学报 54 2662]

    [19]

    Liu P W, Zhao K, Han G C 2011 Chem. Phys. Lett. 514 226

    [20]

    Han G C, Zhao K, Liu P W, Zhang L L 2012 Chin. Phys. B 21 118201

    [21]

    Jia H H, Zhao K, Wu X L 2014 Chem. Phys. Lett. 612 151

    [22]

    Monçalves M, Rampon D S, Schneider P H, Rodembusch F S, Silveira C C 2014 Dyes Pigm. 102 71

    [23]

    Das S K, Lim C S, Yang S Y, Han J H, Cho B R 2012 Chem. Commun. 48 8395

    [24]

    Huang Z L, Lei H, Li N, Qiu Z R, Wang H Z, Guo J D, Luo Y, Zhong Z P, Liu X F, Zhou Z H 2003 J. Mater. Chem. 13 708

    [25]

    Lee H J, Sohn J, Hwang J, Park S Y, Choi H, Cha M 2004 Chem. Mater. 16 456

    [26]

    Yao S, Ahn H Y, Wang X, Fu J, Van Stryland E W, Hagan D J, Belfield K D 2010 J. Org. Chem. 75 3965

    [27]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718

    [28]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814

    [29]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235

    [30]

    Monson P R, McClain W M 1970 J. Chem. Phys. 53 29

    [31]

    Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 11310271

    [32]

    Zhao K, Ferrighi L, Frediani L, Wang C K, Luo Y 2007 J. Chem. Phys. 126 204509

    [33]

    Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade A M, Majoral J P, Blanchard-Desce M 2009 Angew. Chem. Int. Ed. 48 8691

    [34]

    Zhao K, Luo Y 2010 J. Phys. Chem. B 114 13167

  • [1] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] Zhao Ke, Song Jun, Zhang Han. Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives. Acta Physica Sinica, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] Yang Zhe, Zhang Xiang, Xiao Si, He Jun, Gu Bing. Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal. Acta Physica Sinica, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [4] Jia Ke-Ning, Liu Zhong-Bo, Liang Ying, Tong Dian-Min, Fan Xi-Jun. Effect of Doppler broadening on VIC-dependent two-photon absorption in Y-type four-level system. Acta Physica Sinica, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [5] Zhao Ke, Liu Peng-Wei, Han Guang-Chao. Applications of molecular dynamics simulation in nonlinear optics. Acta Physica Sinica, 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [6] Zheng Jia-Jin, Lu Yun-Qing, Li Pei-Li. Optical nonlinearities of excited state intramolecular proton transfer molecule HBT. Acta Physica Sinica, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [7] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [8] Miao Quan, Zhao Peng, Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Two-photon area evolution and optical limiting of ultrashort laser pulses in DBASVP molecule media. Acta Physica Sinica, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [9] Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Effect of time-dependent ionization on properties of the ultrashort pulse propagation and optical power limiting in a two-photon absorption molecular medium. Acta Physica Sinica, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [10] Sun Yuan-Hong, Wang Chuan-Kui. Theoretical study on two-photon absorption properties of novel multi-branched compounds. Acta Physica Sinica, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [11] Wu Wen-Zhi, Zheng Zhi-Ren, Jin Qin-Han, Yan Yu-Xi, Liu Wei-Long, Zhang Jian-Ping, Yang Yan-Qiang, Su Wen-Hui. The property of third-order optical nonlinear susceptibility of water soluble CdTe quantum dots. Acta Physica Sinica, 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [12] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] Zhao Ke, Sun Yuan-Hong, Wang Chuan-Kui, Luo Yi, Zhang Xian, Yu Xiao-Qiang, Jiang Min-Hua. Studies on two-photon absorption cross-sections of 1,4-dimethoxy-2,5-divinyl-benzene derivatives. Acta Physica Sinica, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] Jiang Jun, Li Ning, Chen Gui-Bin, Lu Wei, Wang Ming-Kai, Yang Xue-Ping, Wu Gang, Fan Yao-Hui, Li Yong-Gui, Yuan Xian-Zhang. Free-electron laser induced nonlinear optical absorption in semiconductors. Acta Physica Sinica, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] He Guo-Hua, Zhang Jun-Xiang, Ye Li-Hua, Cui Yi-Ping, Li Zhen-Hua, Lai Jian-Cheng, He An-Zhi. Broadband two-photon absorption and optical power limiting properties of a novel organic compound. Acta Physica Sinica, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] Zhang Yan-Liang, Jiang Li, Niu Yue-Ping, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Interference enhancement of two-photon absorption caused by a pair of coherent superposition levels in Na. Acta Physica Sinica, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] JIA TIAN-QING, CHEN HONG, WU XIANG. PHOTON ABSORPTION OF CONDUCTION BAND ELECTRONS AND ITS EFFECTS ON THE DAMAGE PRO CESSES. Acta Physica Sinica, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
Metrics
  • Abstract views:  5473
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2015
  • Accepted Date:  19 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回