Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of no-diffraction hollow vertex beams with adjustable angular momentum by wave plate phase plates

Shi Jian-Zhen Xu Tian Zhou Qiao-Qiao Ji Xian-Ming Yin Jian-Ping

Citation:

Generation of no-diffraction hollow vertex beams with adjustable angular momentum by wave plate phase plates

Shi Jian-Zhen, Xu Tian, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this article, a new scheme is proposed to generate approximately no-diffraction hollow vertex beams by wave plates. By selecting the appropriate thickness values of wave plates based on the properties of the double refraction, four-step-phase plates for o-light or e-light are formed. With linearly polarized light irradiated at the phase plate, the diffractions of o-light and e-light would overlap according to their intensities. By focusing effect of quasi-Galileo telescope system, a no-diffraction hollow vertex beam can be generated. In this scheme, the optical path is simple and convenient to adjust. Under the adaxial condition, the distributions of diffraction intensity and angular momentum of two wave plates at the numbers of cycles, s=1 and s=4, are numerically simulated according to Fresnel diffraction theory and classical electromagnetic field angular momentum theory. Simulation results indicate that the approximately no-diffraction hollow vertex beams can be generated by each of two phase plates within a long distance. The distributions of intensity and the angular momentum are essentially the same as those generated by spiral phase plates at the same number of cycles. The distributions of intensity and the angular momentum are different at different numbers of cycles s. If s increases, the diffraction bright ring radius increases, the intensity decreases and the average orbital angular momentum increases. At s=4, the length of no-diffraction region is significantly greater than at s=1 and the average orbital angular momentum is four times that at s=1. Within the no-diffraction region, the distribution of orbital angular momentum intensity varies with distance but the total angular momentum is constant. A phase compensator is inserted in the diffraction path to adjust the phase difference between o-light and e-light. Whereas the spin angular momentum of the diffraction light can be adjusted by them, and thus the total angular momentum intensity and average photon angular momentum can be adjusted. This scheme can be utilized to guide the cold atoms or molecules to obtain the adjustable torque throughout the interacting process of atoms and photons.
      Corresponding author: Ji Xian-Ming, jixm@ntu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11034002, 11274114), the National Key Basic Research and Development Program of China (Grant No. 2011CB921602), the Open Fund of Key Subject of Physics, Zhejiang Province (Grant No. xkzwl1522), and the Prospective Joint Research Project, Jiangsu Province (Grant No. BY2015047-07).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Prabhakar S, Kumar A, Banerji J, Singh R P 2011 Opt. Lett. 36 4398

    [3]

    Simpson N, Dholakia K, Allen L, Padgett M 1997 Opt. Lett. 22 52

    [4]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [5]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [6]

    Gecevičius M, Drevinskas R, Beresna M 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Rodenburg B, Mirhosseini M, Malik M 2014 N. J. Phys. 16 033020

    [9]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [10]

    Qian X M, Zhu W Y, Rao R Z 2015 Chin. Phys. B 24 044201

    [11]

    Guo C S, Liu X, He J L, Wang H T 2004 Opt. Express 12 4625

    [12]

    Cottrell D M, Davis J A, Hernandez T J 2011 Opt. Express 19 12873

    [13]

    Kotlyar V V, Kovalev A A, Stafeev S S, Nalimov A G 2013 J. Opt. 15 025712

    [14]

    Schemmel P, Pisano G, Maffei B 2014 Opt. Express 22 14712

    [15]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534

    [16]

    Rumala Y S, Leanhardt A E 2013 J. Opt. Soc. Am. B 30 615

    [17]

    Rumala Y S 2014 J. Opt. Soc. Am. B 31 A6

    [18]

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204 (in Chinese) [王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204]

    [19]

    Yi X N, Ling X H, Zhang Z Y, Li Y, Zhou X X, Liu Y C, Chen S Z, Luo H L, Wen S C 2014 Opt. Express 22 17207

    [20]

    Liu Y C, Ling X H, Yi X N, Zhou X X, Chen S Z, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 756

    [21]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [22]

    Shi J Z, Yang S, Zou Y Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 184202 (in Chinese) [施建珍, 杨深, 邹亚琪, 纪宪明, 印建平 2015 物理学报 64 184202]

    [23]

    Wu G, Lou Q, Zhou J 2008 Opt. Express 16 6417

    [24]

    Stuart A C J 1970 J. Opt. Soc. Am. 60 1168

    [25]

    Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291

    [26]

    Ji X M, Yin J P 2005 J. Opt. Soc. Am. B 22 1737

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Prabhakar S, Kumar A, Banerji J, Singh R P 2011 Opt. Lett. 36 4398

    [3]

    Simpson N, Dholakia K, Allen L, Padgett M 1997 Opt. Lett. 22 52

    [4]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [5]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [6]

    Gecevičius M, Drevinskas R, Beresna M 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Rodenburg B, Mirhosseini M, Malik M 2014 N. J. Phys. 16 033020

    [9]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [10]

    Qian X M, Zhu W Y, Rao R Z 2015 Chin. Phys. B 24 044201

    [11]

    Guo C S, Liu X, He J L, Wang H T 2004 Opt. Express 12 4625

    [12]

    Cottrell D M, Davis J A, Hernandez T J 2011 Opt. Express 19 12873

    [13]

    Kotlyar V V, Kovalev A A, Stafeev S S, Nalimov A G 2013 J. Opt. 15 025712

    [14]

    Schemmel P, Pisano G, Maffei B 2014 Opt. Express 22 14712

    [15]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534

    [16]

    Rumala Y S, Leanhardt A E 2013 J. Opt. Soc. Am. B 30 615

    [17]

    Rumala Y S 2014 J. Opt. Soc. Am. B 31 A6

    [18]

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204 (in Chinese) [王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204]

    [19]

    Yi X N, Ling X H, Zhang Z Y, Li Y, Zhou X X, Liu Y C, Chen S Z, Luo H L, Wen S C 2014 Opt. Express 22 17207

    [20]

    Liu Y C, Ling X H, Yi X N, Zhou X X, Chen S Z, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 756

    [21]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [22]

    Shi J Z, Yang S, Zou Y Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 184202 (in Chinese) [施建珍, 杨深, 邹亚琪, 纪宪明, 印建平 2015 物理学报 64 184202]

    [23]

    Wu G, Lou Q, Zhou J 2008 Opt. Express 16 6417

    [24]

    Stuart A C J 1970 J. Opt. Soc. Am. 60 1168

    [25]

    Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291

    [26]

    Ji X M, Yin J P 2005 J. Opt. Soc. Am. B 22 1737

  • [1] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [2] Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han. Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate. Acta Physica Sinica, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng. Spiral spectrum analysis and application ofcoherent synthetic vortex beams. Acta Physica Sinica, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [4] Wu Wen-Bing, Sheng Zong-Qiang, Wu Hong-Wei. Design and application of flat spiral phase plate. Acta Physica Sinica, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [5] Wang Shuai, Deng Zi-Lan, Wang Fa-Qiang, Wang Xiao-Lei, Li Xiang-Ping. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture. Acta Physica Sinica, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [6] Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin. Generation of Bessel-Gaussian vortex beam by combining technology. Acta Physica Sinica, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [7] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [8] Zhou Qiao-Qiao, Shi Jian-Zhen, Ji Xian-Ming, Yin Jian-Ping. Study on the properties of vector beams generated by a curved wave plate in the strong-focusing regime. Acta Physica Sinica, 2015, 64(5): 053702. doi: 10.7498/aps.64.053702
    [9] Zhou Qi, Lu Jun-fa, Yin Jian-Ping. Theoretical and experimental study of a controllable double-dark-hollow beam. Acta Physica Sinica, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [10] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [11] Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of vortex beams by the four-step phase plates. Acta Physica Sinica, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [12] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [13] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [14] Chen Guo-Jun, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of the tunable vector ellipse hollow beam by using linearly polarized light beams. Acta Physica Sinica, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [15] Ding Pan-Feng, Pu Ji-Xiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation. Acta Physica Sinica, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [16] Ding Pan-Feng, Pu Ji-Xiong. Propagation of Laguerre-Gaussian vortex beam. Acta Physica Sinica, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [17] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [18] Ji Xian-Ming, Xu Shu-Wu, Lu Jun-Fa, Xu Dong-Mei, Yin Jian-Ping. Generation of an adjustable double-well optical trap by shift phase gratings. Acta Physica Sinica, 2008, 57(12): 7591-7599. doi: 10.7498/aps.57.7591
    [19] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [20] Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
Metrics
  • Abstract views:  5156
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2015
  • Accepted Date:  26 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回