Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection

Liu Tong-Jun Xi Xiang Ling Yong-Hong Sun Ya-Li Li Zhi-Wei Huang Li-Rong

Citation:

Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection

Liu Tong-Jun, Xi Xiang, Ling Yong-Hong, Sun Ya-Li, Li Zhi-Wei, Huang Li-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polarization-insensitive metasurfaces are of great value in practical applications. In this paper, we present a polarization-insensitive reflective phase-gradient metasurface operating in optical communication band which has almost the same electromagnetic (EM) responses for both x-and y-polarized incident waves with high-efficiency anomalous reflection.The reflective metasurface employs a typical metal (Au)-insulator (SiO2)-metal (Au) structure, in which the top metal layer consists of periodic arrays of isotropic cross-shaped gold antennas, i.e. unit cells. The supercell of the metasurface is composed of five unit cells with their dimensions different from each other. The normally incident waves are reflected by the metal-grounded plane, but the reflection phases of both x-and y-polarized waves are controlled by changing the dimensions of their unit cells. Based on the finite-difference time-domain simulations, we investigate the polarization-dependent EM responses of this metasurface under the illumination of linearly polarized incident plane waves. Selecting carefully five cross-shaped gold antennas in different dimensions, we obtain polarization-insensitive metasurface with high-performance anomalous reflection in optical communication band.First, in order to investigate the polarization sensitivity of the proposed metasurface, we study the EM responses for x-and y-polarized incident waves, since arbitrary linearly-polarized EM waves can be separated into two orthogonally-polarized components. We find that the two orthogonally-polarized incident EM waves have almost the same phase and amplitude response with the phase nearly linearly changing from 0 to 2up within a supercell, hence a constant gradient of phase discontinuity is introduced and anomalous reflection will occur. We further analyze the reflected electric-field patterns and the far-field intensity distributions, from which we find that the reflected beams exhibit low-distortion wavefronts and the scattered light is predominantly reflected into the anomalous mode. As a consequence, high-efficiency anomalous reflection is realized, with a 70% reflectivity at the operating wavelength of 1480 nm. Furthermore, we look into the incident-angle dependence of the proposed metasurface, and find that the designed metasurface can exhibit polarization insensitivity within a broad incident angle ranging from -30 to 0.In conclusion, we propose a broad-angle polarization-insensitive reflective gradient metasurface with high-efficiency anomalous reflection, which has potential applications in optical communications, signal processing, displaying, imaging and other fields.
      Corresponding author: Liu Tong-Jun, tongjun_liu@163.com;lrhuang@mail.hust.edu.cn ; Huang Li-Rong, tongjun_liu@163.com;lrhuang@mail.hust.edu.cn
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20120142110064).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [3]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [4]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [5]

    Sun S L, He Q, Zhou L 2015 Physics 44 366 (in Chinese) [孙树林, 何琼, 周磊 2015 物理 44 366]

    [6]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 2015 物理学报 64 164102]

    [7]

    He J, Wang X, Hu D, Ye J, Feng S, Kan Q, Zhang Y 2013 Opt. Express 21 20230

    [8]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702-6

    [9]

    Chen X, Huang L, Mhlenbernd H, Li G, Bai B, Tan Q, Jin G, Cheah K K, Qiu C, Li J, Zentgraf T, Zhang S 2012 Nat. Commun. 3 1198

    [10]

    Huang L, Chen X, Mhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808

    [11]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [12]

    Chen H Y, Wang J Fu, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [14]

    Lee Y U, Kim J, Woo J H, Bang L H, Choi E Y, Kim E S, Wu J 2014 Opt. Express 22 20816

    [15]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Sci. Rep. 3 3347

    [16]

    Bonod N, Popov E, Enoch S, Néauport 2006 J. Eur. Opt. Soc-Rapid 1 06029

    [17]

    Li Z W, Huang L R, Lu K, Sun Y L, Min L 2014 Appl. Phys. Express 7 112001

    [18]

    Sun S, Yang K, Wang C, Juan T, Chen W, Liao C, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [19]

    Li Y, Liang B, Gu Z, Zou X, Cheng J 2013 Sci. Rep. 3 2546

    [20]

    Zhang L, Hao J, Qiu M, Zouhdi S, Yang J K W, Qiu C W 2014 Nanoscale 6 12303

    [21]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [22]

    Paul O, Imhof C, Lägel B, Wolff S, Heinrich J, Höfling S, Forchel A, Zengerle R, Beigang R, Rahm M 2009 Opt. Express 17 819

    [23]

    Ma H F, Wang G Z, Kong G S, Cui T J 2015 Sci. Rep. 5 9605

    [24]

    Cui T J, Qi M, Wan X, Zhao J, Cheng Q 2014 Light: Science & Applications 3e218

    [25]

    Liu S, Chen H, Cui T J 2015 Appl. Phys. Lett. 106 151601

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [3]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [4]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [5]

    Sun S L, He Q, Zhou L 2015 Physics 44 366 (in Chinese) [孙树林, 何琼, 周磊 2015 物理 44 366]

    [6]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 2015 物理学报 64 164102]

    [7]

    He J, Wang X, Hu D, Ye J, Feng S, Kan Q, Zhang Y 2013 Opt. Express 21 20230

    [8]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702-6

    [9]

    Chen X, Huang L, Mhlenbernd H, Li G, Bai B, Tan Q, Jin G, Cheah K K, Qiu C, Li J, Zentgraf T, Zhang S 2012 Nat. Commun. 3 1198

    [10]

    Huang L, Chen X, Mhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808

    [11]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [12]

    Chen H Y, Wang J Fu, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [14]

    Lee Y U, Kim J, Woo J H, Bang L H, Choi E Y, Kim E S, Wu J 2014 Opt. Express 22 20816

    [15]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Sci. Rep. 3 3347

    [16]

    Bonod N, Popov E, Enoch S, Néauport 2006 J. Eur. Opt. Soc-Rapid 1 06029

    [17]

    Li Z W, Huang L R, Lu K, Sun Y L, Min L 2014 Appl. Phys. Express 7 112001

    [18]

    Sun S, Yang K, Wang C, Juan T, Chen W, Liao C, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [19]

    Li Y, Liang B, Gu Z, Zou X, Cheng J 2013 Sci. Rep. 3 2546

    [20]

    Zhang L, Hao J, Qiu M, Zouhdi S, Yang J K W, Qiu C W 2014 Nanoscale 6 12303

    [21]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [22]

    Paul O, Imhof C, Lägel B, Wolff S, Heinrich J, Höfling S, Forchel A, Zengerle R, Beigang R, Rahm M 2009 Opt. Express 17 819

    [23]

    Ma H F, Wang G Z, Kong G S, Cui T J 2015 Sci. Rep. 5 9605

    [24]

    Cui T J, Qi M, Wan X, Zhao J, Cheng Q 2014 Light: Science & Applications 3e218

    [25]

    Liu S, Chen H, Cui T J 2015 Appl. Phys. Lett. 106 151601

  • [1] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing. High-efficiency polarization-insensitive superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [3] Wu Yu-Ming, Wang Ren, Ding Xiao, Wang Bing-Zhong. Design of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [4] Dedign of wide-angle metamaterial absorbers based on equivalent medium theory*. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20201448
    [5] Feng Mao-Chang, Li Yong-Feng, Zhang Jie-Qiu, Wang Jia-Fu, Wang Chao, Ma Hua, Qu Shao-Bo. Research of a wide-angle backscattering enhancement metasurface. Acta Physica Sinica, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [6] Zhuang Ya-Qiang, Wang Guang-Ming, Zhang Xiao-Kuan, Zhang Chen-Xin, Cai Tong, Li Hai-Peng. Design of reflective linear-circular polarization converter based on phase gradient metasurface. Acta Physica Sinica, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [7] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [8] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [9] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [10] Wang Cong-Yi, Xu Cheng, Wu Rui-Xin. Wideband and large incident angle wave transparent material based on frequency selective surface with miniaturized elements. Acta Physica Sinica, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [11] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] Zou Tao-Bo, Hu Fang-Rong, Xiao Jing, Zhang Long-Hui, Liu Fang, Chen Tao, Niu Jun-Hao, Xiong Xian-Ming. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials. Acta Physica Sinica, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [13] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Zhang Jie-Que, Ma Hua. A miniaturized low-frequency polarization-insensitive metamaterial absorber based on broadside-coupled spiral structures. Acta Physica Sinica, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [14] Hong Liang, Yang Chen-Ying, Shen Wei-Dong, Ye Hui, Zhang Yue-Guang, Liu Xu. Design of incident angle-independent color filter based on subwavelength two-dimensional gratings. Acta Physica Sinica, 2013, 62(6): 064204. doi: 10.7498/aps.62.064204
    [15] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Ma Hua, Lin Bao-Qin, Bai Peng, Peng Wei-Dong. A polarization-insensitive and double-face-absorption chiral metamaterial absorber. Acta Physica Sinica, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [16] Gu Chao, Qu Shao-Bo, Pei zhi-Bin, Gu Wei, Liu Jia, Xu Zhuo. The design of a quasi-omnidirectional tabulate metamaterial absorber. Acta Physica Sinica, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [17] Yuan Xiao-Hui, Li Yu-Tong, Xu Miao-Hua, Zheng Zhi-Yuan, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi, Zhao Wei, Zhang Jie. Influence of laser incidence angle on hot electrons generated in the interaction of ultrashort intense laser pulses with foil target. Acta Physica Sinica, 2006, 55(11): 5899-5904. doi: 10.7498/aps.55.5899
    [18] ZHANG GUANG-YIN. SOLUTIONS AND CHARACTERS OF THE THERMAL-INSEN-SITIVE RESONATOR. Acta Physica Sinica, 1991, 40(3): 407-413. doi: 10.7498/aps.40.407
    [19] SHAO QI-YUN, HUO YU-KUN, CHEN JIAN-XIN, WU SHI-MING, PAN ZHENG-YING. INFLUENCE OF THE INCIDENCE ANGLE OF THE ION-BOMBARDMENT ON THE SPUTTERING PARAMETERS. Acta Physica Sinica, 1991, 40(4): 659-666. doi: 10.7498/aps.40.659
    [20] ZHANG GUANG-YIN, WANG BAO-MING. ABNORMAL SENSIBILITY OF REFLECTION STRUCTURES FOR WEAK VIBRATIONS ON THE SHORT-WAVE SIDE OF RESTSTRAHLEN BAND OF CRYSTALS. Acta Physica Sinica, 1984, 33(9): 1306-1313. doi: 10.7498/aps.33.1306
Metrics
  • Abstract views:  6526
  • PDF Downloads:  584
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2015
  • Accepted Date:  15 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回