Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of synthesis temperature and N2/O2 flow on morphology and field emission property of SnO2 nanowires

Ma Li-An Zheng Yong-An Wei Zhao-Hui Hu Li-Qin Guo Tai-Liang

Citation:

Effect of synthesis temperature and N2/O2 flow on morphology and field emission property of SnO2 nanowires

Ma Li-An, Zheng Yong-An, Wei Zhao-Hui, Hu Li-Qin, Guo Tai-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A large amount of tin oxide (SnO2) nanowire arrays were synthesized on the flexible conductive carbon fiber substrate by thermal evaporation of tin powders in a tube furnace. The temperature, as well as the flow rate of the carrier N2 gas and the reaction O2 gas, plays an important role in defining the morphology of the SnO2 nanowires. Morphology and structure of the as-grown SnO2 samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results show that all the samples possess a typical rutile structure, and no other impurity phases are observed. The morphology changes from rod to wire with the increase of reaction temperature. Ratio of length to diameter of the nanowires increases first and then decreases with the flow ratio of N2/O2 gas. The optimum synthesis conditions of SnO2 nanowire are: reaction temperature 780 ℃, N2 and O2 flow rates being 300 sccm and 3 sccm respectively. In our growth process, the nanowire grows mainly due to the vapor-liquid-solid (VLS) growth process, but both the VLS process and surface diffusion combined with a preferential growth mechanism play the important role in morphology evolution of the SnO2.Field emission measurements for Samples 1-6 are carried out in a vacuum chamber and a diode plate configuration is used. Relationship between the growth orientation, aspect ratio, density and uniformity of the arrays and field emission performances will be investigated first. Results reveal that the field emission performance of SnO2 nanostructures depends on their morphologies and array density. The turn-on electric field (at the current density of 10 upA/cm2) decreases and the emission site density increases with tin oxide array density, and the turn-on electric field of Sample 5 (synthesized at 780 ℃, nitrogen and oxygen flow rates being 300 sccm and 3 sccm respectively) is about 1.03 V/m at a working distance of 500 m. By comparison, for the turn-on electric fields of the not well-aligned SnO2 nanowire arrays we have 1.58, 2.13, 2.42, 1.82, and 1.97 V/m at 500 m. These behaviors indicate that such an ultralow turn-on field emission and marked enhancement in (~ 4670) can be attributed to the better orientation, the good electric contact with the conducting fiber substrate where they grow, and the weaker field-screening effect. Our results demonstrate that well-aligned nanowire arrays, with excellent field-emission performance, grown on fiber substrate can provide the possibility of application in flexible vacuum electron sources.
      Corresponding author: Ma Li-An, mla728@hotmail.com
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2012J01185), Engineering Research Center of Field Emission Display Technology, Ministry of Education, China (Grant No. KF1016), and the Science and Technology Bureau of Fuzhou, China (Grant No. 2014-G-81).
    [1]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323

    [2]

    Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968

    [3]

    Croci M, Arfaoui I, Stockli T, Chatelain A, Bonard J M 2004 Microelectron J. 35 329

    [4]

    Zhang J M, Du X J, Wang S F, Xu K W 2009 Chin. Phys. B 18 5468

    [5]

    Liu P, Wei Y, Liu K, Liu L, Jiang K L, Fan S S 2012 Nano Lett. 12 2391

    [6]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [7]

    Ghosh K, Kumar M, Wang H F, Maruyama T, Ando Y 2010 Langmuir 26 5527

    [8]

    Wang Z, Zuo Y L, Li Y, Han X M, Guo X B, Wang J B, Cao B, Xi L, Xue D S 2014 Carbon73 114

    [9]

    Wang J C 2013 Chin. Phys. B 22 068504

    [10]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [11]

    Li Z J, Li W D 2013 Acta Phys. Sin. 62 097902 (in Chinese) [李镇江, 李伟东 2013 物理学报] 62 097902

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv Funct Mater. 18 2411

    [13]

    Kim H, Cho 2008 J. Mater. Chem. 18 771

    [14]

    Wan Q, Huang J, Xie Z, Wang T H, Dattoli E N, Lu W 2008 Appl Phys Lett. 92 102101

    [15]

    Fang X S, Yan J, Hu L F, Liu H, Lee P S 2012 Adv. Funct. Mater. 22 1613

    [16]

    Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来, 唐东升, 刘星辉, 海阔, 羊亿, 袁华军, 解思深 2007 物理学报 56 6531]

    [17]

    Wang G X, Park J S, Park M S 2009 J Nanosci Nanotechnol. 9 1144

    [18]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

    [19]

    Wang Y L, Guo M, Zhang M, Wang X D 2009 Scripta Mater. 61 23

    [20]

    Qin L P, Xu J Q, Dong X W 2008 Nanotechnol. 19 1857051

    [21]

    Kong X H, Li Y D 2003 Chem. Lett. 32 100

    [22]

    Wang B, Yang Y H, Wang C X, Xu N S, Yang G Wet 2005 J. Appl. Phys. 98 1243031

    [23]

    Zhang Y S, Yu K, Li G D, Peng D Y, Zhang Q X, Xu F, Bai W, Ouyang S X, Zhu Z Q 2006 Mater Lett. 60 3109

    [24]

    Zhang Z, Wu S J, Yu T, Wu T 2007 J. Phys. Chem. C 111 17500

    [25]

    Ma L A, Guo T L 2013 Ceram.Int. 39 6923

    [26]

    Lilach Y, Zhang J P, Moskovits M, Kolmakov A 2005 Nano Lett. 5 2019

    [27]

    Chen Y J, Li Q H, Liang. Y X, Wang T H, Zhao Q X, Yu D P 2004 Appl. Phys.Lett. 85 5682

    [28]

    Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y, Wu X L 2006 Appl. Phys. Lett. 88 013109

    [29]

    Deng KM, Lu H, Shi Z W, Liu Q, Li L 2013 ACS Appl. Mater. Interfaces 5 7845

    [30]

    Li X B, Wang X W, Shen Q, Zheng J, Liu W H, Zhao H, Yang F, Yang H Q 2013 ACS Appl. Mater. Interfaces 5 3033

    [31]

    Jo S H, Wang D Z, Huang J Y, Li W Z, Kempa K, Ren Z F 2004 Appl. Phys.Lett. 85 810

    [32]

    Wu Y Y, Yang P D 2001 J. Am. Chem. Soc. 123 3165

    [33]

    Lee S H, Jo G H, Park W, Lee S, Kim Y S, Cho B K, Lee T, Kim W B 2010 ACS Nano 4 1829

    [34]

    Sun S H, Meng G W, Zhang M G, An X H, Wu G S, Zhang L D 2004 J. Phys. D, Appl. Phys. 37 409

    [35]

    Jin C H, Wang J Y, Wang M S, Su J, Peng L M 2005 Carbon43 1026

    [36]

    Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T, Fourkas J T 2003 Appl. Phys. Lett. 83 4821

    [37]

    Chavan P G, Badadhe S S, Mulla I S, More M A, Joag D S 2011 Nanoscale 3 1078

    [38]

    Ye Y, Chen T Y, Guo T L, Jiang Y D 2014 Acta Phys. Sin. 63 086802 (in Chinese) [叶芸, 陈填源, 郭太良, 蒋亚东 2014 物理学报 63 086802]

    [39]

    Xu N S, Huq S E 2005 Mater Sci Eng R Rep 48 47

    [40]

    de Heer WA, Chatelain A, Ugarte D 1995 Science 270 1179

    [41]

    Szuber J, Czempik G, Larciprete R, Adamowicz B 2000 Sens. Actuators. B Chem. 70 177

    [42]

    Wu J, Yu K, Li L J, Xu J W, Shang D J, Xu Y, Zhu Z Q 2008 J. Phys. D: Appl. Phys. 41 185302

    [43]

    Li J J, Chen M M, Tian S B, Jin A Z, Xia X X, Guo C Z 2011 Nanotechnol 22 505601

    [44]

    Ma L A, Guo T L 2009 Mater. Lett. 63 295

    [45]

    Wu J M 2008 Thin Solid Film 517 1289

    [46]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

  • [1]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323

    [2]

    Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968

    [3]

    Croci M, Arfaoui I, Stockli T, Chatelain A, Bonard J M 2004 Microelectron J. 35 329

    [4]

    Zhang J M, Du X J, Wang S F, Xu K W 2009 Chin. Phys. B 18 5468

    [5]

    Liu P, Wei Y, Liu K, Liu L, Jiang K L, Fan S S 2012 Nano Lett. 12 2391

    [6]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [7]

    Ghosh K, Kumar M, Wang H F, Maruyama T, Ando Y 2010 Langmuir 26 5527

    [8]

    Wang Z, Zuo Y L, Li Y, Han X M, Guo X B, Wang J B, Cao B, Xi L, Xue D S 2014 Carbon73 114

    [9]

    Wang J C 2013 Chin. Phys. B 22 068504

    [10]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [11]

    Li Z J, Li W D 2013 Acta Phys. Sin. 62 097902 (in Chinese) [李镇江, 李伟东 2013 物理学报] 62 097902

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv Funct Mater. 18 2411

    [13]

    Kim H, Cho 2008 J. Mater. Chem. 18 771

    [14]

    Wan Q, Huang J, Xie Z, Wang T H, Dattoli E N, Lu W 2008 Appl Phys Lett. 92 102101

    [15]

    Fang X S, Yan J, Hu L F, Liu H, Lee P S 2012 Adv. Funct. Mater. 22 1613

    [16]

    Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来, 唐东升, 刘星辉, 海阔, 羊亿, 袁华军, 解思深 2007 物理学报 56 6531]

    [17]

    Wang G X, Park J S, Park M S 2009 J Nanosci Nanotechnol. 9 1144

    [18]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

    [19]

    Wang Y L, Guo M, Zhang M, Wang X D 2009 Scripta Mater. 61 23

    [20]

    Qin L P, Xu J Q, Dong X W 2008 Nanotechnol. 19 1857051

    [21]

    Kong X H, Li Y D 2003 Chem. Lett. 32 100

    [22]

    Wang B, Yang Y H, Wang C X, Xu N S, Yang G Wet 2005 J. Appl. Phys. 98 1243031

    [23]

    Zhang Y S, Yu K, Li G D, Peng D Y, Zhang Q X, Xu F, Bai W, Ouyang S X, Zhu Z Q 2006 Mater Lett. 60 3109

    [24]

    Zhang Z, Wu S J, Yu T, Wu T 2007 J. Phys. Chem. C 111 17500

    [25]

    Ma L A, Guo T L 2013 Ceram.Int. 39 6923

    [26]

    Lilach Y, Zhang J P, Moskovits M, Kolmakov A 2005 Nano Lett. 5 2019

    [27]

    Chen Y J, Li Q H, Liang. Y X, Wang T H, Zhao Q X, Yu D P 2004 Appl. Phys.Lett. 85 5682

    [28]

    Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y, Wu X L 2006 Appl. Phys. Lett. 88 013109

    [29]

    Deng KM, Lu H, Shi Z W, Liu Q, Li L 2013 ACS Appl. Mater. Interfaces 5 7845

    [30]

    Li X B, Wang X W, Shen Q, Zheng J, Liu W H, Zhao H, Yang F, Yang H Q 2013 ACS Appl. Mater. Interfaces 5 3033

    [31]

    Jo S H, Wang D Z, Huang J Y, Li W Z, Kempa K, Ren Z F 2004 Appl. Phys.Lett. 85 810

    [32]

    Wu Y Y, Yang P D 2001 J. Am. Chem. Soc. 123 3165

    [33]

    Lee S H, Jo G H, Park W, Lee S, Kim Y S, Cho B K, Lee T, Kim W B 2010 ACS Nano 4 1829

    [34]

    Sun S H, Meng G W, Zhang M G, An X H, Wu G S, Zhang L D 2004 J. Phys. D, Appl. Phys. 37 409

    [35]

    Jin C H, Wang J Y, Wang M S, Su J, Peng L M 2005 Carbon43 1026

    [36]

    Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T, Fourkas J T 2003 Appl. Phys. Lett. 83 4821

    [37]

    Chavan P G, Badadhe S S, Mulla I S, More M A, Joag D S 2011 Nanoscale 3 1078

    [38]

    Ye Y, Chen T Y, Guo T L, Jiang Y D 2014 Acta Phys. Sin. 63 086802 (in Chinese) [叶芸, 陈填源, 郭太良, 蒋亚东 2014 物理学报 63 086802]

    [39]

    Xu N S, Huq S E 2005 Mater Sci Eng R Rep 48 47

    [40]

    de Heer WA, Chatelain A, Ugarte D 1995 Science 270 1179

    [41]

    Szuber J, Czempik G, Larciprete R, Adamowicz B 2000 Sens. Actuators. B Chem. 70 177

    [42]

    Wu J, Yu K, Li L J, Xu J W, Shang D J, Xu Y, Zhu Z Q 2008 J. Phys. D: Appl. Phys. 41 185302

    [43]

    Li J J, Chen M M, Tian S B, Jin A Z, Xia X X, Guo C Z 2011 Nanotechnol 22 505601

    [44]

    Ma L A, Guo T L 2009 Mater. Lett. 63 295

    [45]

    Wu J M 2008 Thin Solid Film 517 1289

    [46]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

  • [1] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [2] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [3] Xiang Fei, Wu Ping, Zeng Fan-Guang, Wang Gan-Ping, Li Chun-Xia, Ju Bing-Quan. Fast-pulse repetitive frequency emission characteristic of high current carbon nanotubes cathode. Acta Physica Sinica, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [4] Wang Yi-Jun, Cheng Yan. Field-emission current densities of carbon nanotube under the different electric fields. Acta Physica Sinica, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [5] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [6] Yuan Xue-Song, Zhang Yu, Sun Li-Min, Li Xiao-Yun, Deng Shao-Zhi, Xu Ning-Sheng, Yan Yang. Study of pulsed field emission characteristics and simulation models of carbon nanotube cold cathodes. Acta Physica Sinica, 2012, 61(21): 216101. doi: 10.7498/aps.61.216101
    [7] Qian Li, Wang Yu-Quan, Liu Liang, Fan Shou-Shan. Field emission of carbon nanotube under atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [8] Pan Jin-Yan, Gao Yun-Long, Zhang Wen-Yan. High luminance carbon nanotube field emission cold cathode based on indium tin oxide/Ti composite electrode. Acta Physica Sinica, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [9] He Chun-Shan, Wang Wei-Liang, Chen Gui-Hua, Li Zhi-Bing. Image potential effect on field emission from arrays of carbon nanotubes. Acta Physica Sinica, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [10] Wu Xiang, Cai Wei, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [11] Qin Hua-Fang, Guo Tai-Liang. Preparation of tetrapod-shaped ZnO nanomaterial field emission cathodes by deposition method. Acta Physica Sinica, 2008, 57(2): 1224-1228. doi: 10.7498/aps.57.1224
    [12] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] Lin Zhi-Xian, Guo Tai-Liang, Hu Li-Qin, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Tetrapod-like ZnO nanostructures serving as cold cathodes for flat panel displays. Acta Physica Sinica, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [15] Ding Pei, Chao Ming-Ju, Liang Er-Jun, Guo Xin-Yong. Fabrication of CNx nanotubes films using different nitrogen sources and their low field emission properties. Acta Physica Sinica, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [16] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [17] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [18] Ding Pei, Chao Ming-Ju, Liang Er-Jun, Guo Xin-Yong, Du Zu-Liang. Synthesis structure observation and low field emission of CNx nanotubes. Acta Physica Sinica, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
    [19] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  4463
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2015
  • Accepted Date:  18 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回