Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical investigation of the effects of impurity on the properties of Nb2GeC

Chen Jun-Jun Duan Ji-Zheng Zhang Xue-Zhi Jiang Xin Duan Wen-Shan

Citation:

Theoretical investigation of the effects of impurity on the properties of Nb2GeC

Chen Jun-Jun, Duan Ji-Zheng, Zhang Xue-Zhi, Jiang Xin, Duan Wen-Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • MAX phases are potential future materials used in the nuclear industry. Recently, a new MAX phase Nb2GeC is predicted as the most stable compound, and confirmed by thin film synthesis.In the operation of fusion reactor, the accumulation and aggregation of helium and hydrogen produced from transmutation reactions would induce bubble formation and void swelling and further result in embrittlement and irradiation-induced hardening of the materials. High solubility and permeability of tritium and solubility of interstitial impurities like O, C, and N can also lead to embrittlement. In order to further investigate the characters of Nb2Ge in irradiation environment, ab initio calculations are performed on the energetics of O, H and He impurities in Nb2Ge. The study of all the impurities is carried out in two ways, substitutionally and interstitially. Formation energies due to substitution and interstitial are calculated, lattice parameters and unit cell volume of Nb2GeC with substitutional or interstitial impurities are obtained, and its electronic property is analysed by Mulliken population and electron charge density.The formation energies of H substitution are lower than those of O substitution and He substitution, hence H atoms are trapped more easily by some irradiation-induced vacancies. The formation energies of O subtitution indicate the sequence Ef(Osub-Nb)>Ef(Osub-Ge) ≈ Ef(Osub-C), which is related to the strength of bonds. Analysis on electron charge density and Mulliken population shows that C-O bond is stronger than Nb-O and Ge-O bond, and the bond lengths of C-O, Nb-O and Ge-O are 3.256, 2.118 and 1.985 Å respectively. Due to the interaction of O atom with Nb, Ge and C atoms in Nb2Ge, the O atom would deviate from the vacancy, and goes to the deformed sites in the crystal structure. As for H substitution, the formation energies of substitution show the sequence Ef(Hsub-Nb)>Ef(Hsub-Ge) > Ef(Hsub-C). C-H and Nb-H are ionic bond and covalent bond respectively, and their bond lengths are 3.131 and 2.706 Å respectively. The formation energies of He substitution present the sequence: Ef(Hesub-C) > Ef(Hesub-Nb) > Ef(Hesub-Ge), and suggest that the He atom is the easiest to be trapped by C vacancy. All O, H and He interstitials make lattice parameter a increase, c decrease and unit cell V shrink. Besides, the results of substitution and interstitial formation energies show that O, H and He impurities prefer to stay on octahedral sites. These results could provide initial physical picture for further understanding the accumulation and bubble formation of impurities in Nb2GeC.
      Corresponding author: Duan Wen-Shan, duanws@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275156).
    [1]

    Zhang P B, Zhao J J, Qin Y, Wen Bin 2011 J. Nucl. Mater. 49 1

    [2]

    Barabash V, Peacock A, Fabritsiev S, Kalinin G, Zinkle S, Rowcliffe A, Rensman J W, Tavassoli A A, Marmy P, Karditsas P J, Gillemot F, Akiba M 2007 J. Nucl. Mater. 21 367

    [3]

    Yang X Y, Lu Y, Zhang P 2015 J. Nucl. Mater. 465 161

    [4]

    Liu W G, Qian Y, Zhang D X, Liu W, Han H 2015 J. Nucl. Mater. 465 254

    [5]

    Jiang S N, Wan F R, Long Y, Liu C X, Zhan Q, Somei O 2013 Acta Physica Sinica 62 166801 (in Chinese) [姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明 2013 物理学报 62 166801]

    [6]

    Gurovich B A, Kuleshova E A, Frolov A S, Maltsev D A, Prikhodko K E, Fedotova S V, Margolin B Z, Sorokin A A 2015 J. Nucl. Mater. 465 565

    [7]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 79 283

    [8]

    Kurtz R J, Abe K, Chernov V M, Kazakov V A, Lucas G E, Matsui H, Muroga T, Odette G R, Smith D L, Zinkle S J 2000 J. Nucl. Mater. 70 283

    [9]

    Stoneham A M, Catlow R, Lidiard A B 2004 J. Phys.: Condens. Matter 16 S2597

    [10]

    Weber W J, Wang L M 1996 N. Yu, Nucl. Instr. Meth. B 116 322

    [11]

    Riley D P, Kisi E H 2007 J. Am. Ceram. Soc. 90 2231

    [12]

    Nappé J C, Monnet I, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M, Thomé L 2011 J. Nucl. Mater. 409 53

    [13]

    Barsoum M W 2000 Prog. Solid State Chem 28 201

    [14]

    Music D, Schneider J M 2007 JOM 59 60

    [15]

    Eklund P, Beckers M, Jansson U, Högberg H, Hultman L 2010 Thin Solid Films 518 1851

    [16]

    Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195

    [17]

    Wang J Y, Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415

    [18]

    Eklund P, Dahlqvist M, Tengstrand O, Hultman L, Lu J, Nedfors N, Jansson U, Ros é n J 2012 Phys. Rev. Lett. 109 035502

    [19]

    Shein I R, Ivanovskii A L 2013 Physica B 410 42

    [20]

    Ali M S, Parvin F, Islam A K M A, Hossain M A 2013 Comput. Mater. Sci. 74 119

    [21]

    Chen J J, Duan J Z, Wang C L, Duan W S, Yang L 2014 Comput. Mater. Sci. 82 521

    [22]

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301 (in Chinese) [谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301]

    [23]

    Liu B, Wang J Y, Li F Z, Zhou Y C 2009 Appl. Phys. Lett. 94 181906

    [24]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [25]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Appl. Phys. 115 023503

    [26]

    Middleburgh S C, Lumpkin G R, Riley D 2013 J. Am. Ceram. Soc. 96 3196

    [27]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Phys. Chem. Solids 75 384

    [28]

    Xu Y G, Ou X D, Rong X M 2014 Mater. Lett. 116 322

    [29]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [30]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [31]

    Sun X, Guo Y S, Wang X Q, Zhang Y 2012 Chin. J. Chem. Phys 25 261

    [32]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [33]

    Lee S-G, Chang K J 1996 Phys. Rev. B 53 9784

    [34]

    Baben M, Shang L, Emmerlich J, Schneider J M 2012 Acta. Mater. 60 4810

    [35]

    Manzar A, Murtaza G, Khenata R, Masood Yousaf, Muhammad S, Hayatullah 2014 Chin. Phys. Lett. 31 067401

    [36]

    Hou Q Y, Guo S Q, Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese) [侯清玉, 郭少强, 赵春旺 2014 物理学报 63 147101]

    [37]

    Qiu P Y 2014 Chin. Phys. Lett. 31 066201

    [38]

    Jia Y F, Shu X L, Xie Y, Chen Z Y 2014 Chin. Phys. B 23 076105

  • [1]

    Zhang P B, Zhao J J, Qin Y, Wen Bin 2011 J. Nucl. Mater. 49 1

    [2]

    Barabash V, Peacock A, Fabritsiev S, Kalinin G, Zinkle S, Rowcliffe A, Rensman J W, Tavassoli A A, Marmy P, Karditsas P J, Gillemot F, Akiba M 2007 J. Nucl. Mater. 21 367

    [3]

    Yang X Y, Lu Y, Zhang P 2015 J. Nucl. Mater. 465 161

    [4]

    Liu W G, Qian Y, Zhang D X, Liu W, Han H 2015 J. Nucl. Mater. 465 254

    [5]

    Jiang S N, Wan F R, Long Y, Liu C X, Zhan Q, Somei O 2013 Acta Physica Sinica 62 166801 (in Chinese) [姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明 2013 物理学报 62 166801]

    [6]

    Gurovich B A, Kuleshova E A, Frolov A S, Maltsev D A, Prikhodko K E, Fedotova S V, Margolin B Z, Sorokin A A 2015 J. Nucl. Mater. 465 565

    [7]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 79 283

    [8]

    Kurtz R J, Abe K, Chernov V M, Kazakov V A, Lucas G E, Matsui H, Muroga T, Odette G R, Smith D L, Zinkle S J 2000 J. Nucl. Mater. 70 283

    [9]

    Stoneham A M, Catlow R, Lidiard A B 2004 J. Phys.: Condens. Matter 16 S2597

    [10]

    Weber W J, Wang L M 1996 N. Yu, Nucl. Instr. Meth. B 116 322

    [11]

    Riley D P, Kisi E H 2007 J. Am. Ceram. Soc. 90 2231

    [12]

    Nappé J C, Monnet I, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M, Thomé L 2011 J. Nucl. Mater. 409 53

    [13]

    Barsoum M W 2000 Prog. Solid State Chem 28 201

    [14]

    Music D, Schneider J M 2007 JOM 59 60

    [15]

    Eklund P, Beckers M, Jansson U, Högberg H, Hultman L 2010 Thin Solid Films 518 1851

    [16]

    Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195

    [17]

    Wang J Y, Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415

    [18]

    Eklund P, Dahlqvist M, Tengstrand O, Hultman L, Lu J, Nedfors N, Jansson U, Ros é n J 2012 Phys. Rev. Lett. 109 035502

    [19]

    Shein I R, Ivanovskii A L 2013 Physica B 410 42

    [20]

    Ali M S, Parvin F, Islam A K M A, Hossain M A 2013 Comput. Mater. Sci. 74 119

    [21]

    Chen J J, Duan J Z, Wang C L, Duan W S, Yang L 2014 Comput. Mater. Sci. 82 521

    [22]

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301 (in Chinese) [谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301]

    [23]

    Liu B, Wang J Y, Li F Z, Zhou Y C 2009 Appl. Phys. Lett. 94 181906

    [24]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [25]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Appl. Phys. 115 023503

    [26]

    Middleburgh S C, Lumpkin G R, Riley D 2013 J. Am. Ceram. Soc. 96 3196

    [27]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Phys. Chem. Solids 75 384

    [28]

    Xu Y G, Ou X D, Rong X M 2014 Mater. Lett. 116 322

    [29]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [30]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [31]

    Sun X, Guo Y S, Wang X Q, Zhang Y 2012 Chin. J. Chem. Phys 25 261

    [32]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [33]

    Lee S-G, Chang K J 1996 Phys. Rev. B 53 9784

    [34]

    Baben M, Shang L, Emmerlich J, Schneider J M 2012 Acta. Mater. 60 4810

    [35]

    Manzar A, Murtaza G, Khenata R, Masood Yousaf, Muhammad S, Hayatullah 2014 Chin. Phys. Lett. 31 067401

    [36]

    Hou Q Y, Guo S Q, Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese) [侯清玉, 郭少强, 赵春旺 2014 物理学报 63 147101]

    [37]

    Qiu P Y 2014 Chin. Phys. Lett. 31 066201

    [38]

    Jia Y F, Shu X L, Xie Y, Chen Z Y 2014 Chin. Phys. B 23 076105

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. Effect of impurity compensation on optical properties of Si based on first-principles. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231814
    [2] Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun. First-principles study of influence of Si on γ phase in Inconel 718 alloy. Acta Physica Sinica, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [3] Zhou Hong-Cai, Huang Shu-Lai, Li Gui-Xia, Yu Gui-Feng, Wang Juan, Bu Hong-Xia. First-principles prediction of carbon monoxide nanotube bundles in low pressure phase. Acta Physica Sinica, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [4] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [5] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [7] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [8] Tang Jie, Zhang Guo-Ying, Bao Jun-Shan, Liu Gui-Li, Liu Chun-Ming. First-principles study of the effect of S impurity on the adhesion of Fe/Al2O3 interface. Acta Physica Sinica, 2014, 63(18): 187101. doi: 10.7498/aps.63.187101
    [9] Zhang Xue-Jun, Zhang Guang-Fu, Jin Hui-Xia, Zhu Liang-Di, Liu Qing-Ju. First-principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt. Acta Physica Sinica, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [10] Zheng Shu-Kai, Wu Guo-Hao, Liu Lei. First-principles calculations of P-doped anatase TiO2. Acta Physica Sinica, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [11] Fan Kai-Min, Yang Li, Sun Qing-Qiang, Dai Yun-Ya, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles study on elastic properties of hexagonal phase ErAx (A=H, He). Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [13] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [15] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhang Bing. First-principles study on the doped concentration effect on electron lifespan and absorption spectrum of Eu-doping anatase TiO2. Acta Physica Sinica, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [16] Su Rui, Long Yao, Jiang Sheng-Li, He Jie, Chen Jun. Elastic properties of β-HMX under extra pressure: a first principles study. Acta Physica Sinica, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [17] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [18] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [19] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] LI CHAO-RONG, WU LI-JUN, CHEN WAN-CHUN. STUDIES OF THE IMPURITY EFFECTS ON CRYSTALLINE QUALITY BY HIGH-RESOLUTION X-RAY DIFFRACTION. Acta Physica Sinica, 2001, 50(11): 2185-2191. doi: 10.7498/aps.50.2185
Metrics
  • Abstract views:  4136
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2015
  • Accepted Date:  05 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回