Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen storage properties of Li-decorated C24 clusters

Qi Peng-Tang Chen Hong-Shan

Citation:

Hydrogen storage properties of Li-decorated C24 clusters

Qi Peng-Tang, Chen Hong-Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hydrogen is considered as a potentially ideal substitution for fossil fuels in the future sustainable energy system because it is an abundant, clean and renewable energy carrier. A safe, efficient and economic storage method is the crucial prerequistite and the biggest challenge for the wide scale use of hydrogen. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface to volume ratio, unique electronic structure and novel chemical and physical properties. It has been demonstrated that pristine nanostructures are not suitable for hydrogen storage, since they interact weakly with hydrogen molecule and their hydrogen storage density is very low. However, the hydrogen storage capacity of the nanostructures can be significantly enhanced through substitutional doping or decoration by metal atoms. Using density functional theory, we investigate the properties of hydrogen adsorption on Li-decorated C24clusters. Results show that the preferred binding site for Li atom is the pentagonal rings. The interaction of Li atoms with the clusters is stronger than that among Li atoms, thus hindering effectively aggregation of Li atoms on the surface of the cluster. The decorated Li atoms are positively charged due to electron transfer from Li to C atoms. When H2 molecules approach Li atoms, they are moderately polarized under the electric field, and adsorbed around the Li atoms in molecular form. Each Li atom in the Li-decorated C24 complexes can adsorb two to three H2 molecules. The H-H bond lengths of the adsorbed H2 molecules are slightly stretched. The average adsorption energies are in the range of 0.08 to 0.13 eV/H2, which are intermediate between physisorption and chemisorption. C24Li6 can hold up to 12 H2 molecules, corresponding to a hydrogen uptake density of 6.8 wt%. This value exceeds the 2020 hydrogen storage target of 5.5 wt% proposed by the U. S. Department of Energy.
      Corresponding author: Chen Hong-Shan, chenhs@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11164024), and the Northwest Normal University (Grant No. NWNU-KJCXGC-03-62).
    [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Crabtree G W, Dresselhaus M S, Buchanan M V 2004 Phys. Today 57 39

    [3]

    Schlapbach L, Zttel A 2001 Natrue 414 353

    [4]

    Chen P, Zhu M 2008 Mater. Today 11 36

    [5]

    Graetz J 2009 Chem. Soc. Rev. 38 73

    [6]

    Jena P 2011 J. Phys. Chem. Lett. 2 206

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phy. B 23 067303

    [8]

    Bhatia S K, Myers A L 2006 Langmuir 221688

    [9]

    Lochan R C, Gordon M H 2006 Phys. Chem. Chem. Phys. 8 1357

    [10]

    Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608

    [11]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 129 8999

    [12]

    U. S. Department of Energy, Hydrogen, fuel cells program: FY 2014 Annual Progress Report

    [13]

    Yang J, Sudik A, Wolvertonb C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [14]

    Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem. Sect. A 105 21

    [15]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]

    [16]

    Lu Q L, Huang S G, Li Y D 2013 Acta Phys. Sin. 62 213601 (in Chinese) [卢其亮, 黄守国, 李宜德 2013 物理学报 62 213601]

    [17]

    Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 物理学报 64 096103]

    [18]

    Schur D V, Zaginaichenko S Y, Savenko A F, Bogolepov V A, Anikina N S, Zolotarenko A D, Matysina Z A, Veziroglu T N, Skryabina N E 2011 Int. J. Hydrogen Energy 36 1143

    [19]

    Henwood D, Carey J D 2007 Phys. Rev. B 75 245413

    [20]

    Zhou Z, Zhao J J, Chen Z F, Gao X P, Yan T Y, Wen B, Schleyer P V 2006 J. Phys. Chem. B 110 13363

    [21]

    Kim Y H, Zhao Y Y, Wiiliamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102

    [22]

    Guo Y H, Jiang K, Xu B, Xia Y. D, Yin J, Liu Z G 2012 J. Phys. Chem. C 116 13837

    [23]

    Pupysheva O V, Farajian A A, Yakobson B I 2008 Nano Lett. 8 767

    [24]

    Wu M H, Gao Y, Zhang Z Y, Zeng X C 2012 Nanoscale 4 915

    [25]

    Giri S, Lund F, Núñez A S, Toro-Labbé A 2013 J. Phys. Chem. C 117 5544

    [26]

    Li M, Li Y F, Zhou Z, Shen P W, Chen Z F 2009 Nano Lett. 9 1944

    [27]

    An H, Liu C S, Zeng Z 2011 Phys. Rev. B 83 115456

    [28]

    Tai T B, Nguyen M T 2013 Chem. Commun. 49 913

    [29]

    Durgun E, Jang Y R, Ciraci S 2007 Phys. Rev. B 76 073413

    [30]

    Venkataramanan N S, Belosludov R V, Note R, Sahara R, Mizuseki H, Kawazoe Y 2010 Chem. Phys. 377 54

    [31]

    Lee H, Li J, Zhou G, Duan W, Kim G, lhm J 2008 Phys. Rev. B 77 235101

    [32]

    Chung T C M, Jeong Y, Chen Q, Kleinhammes A, Wu Y 2008 J. Am. Chem. Soc. 130 6668

    [33]

    Chen X W, Yuan F, Gu Q F, Yu X B 2013 J. Mater. Chem. A 1 11705

    [34]

    Yildrim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [35]

    Zhao Y F, Kim Y H, Dillon A C, Heben J M, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [36]

    Shin W H, Yang S H, Goddard W A, Kang J K 2006 Appl. Phys. Lett. 88 053111

    [37]

    Sun Q, Wang Q, Jena P 2005 J. Am. Chem. Soc. 127 14582

    [38]

    Venkataramanan N S, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y 2009 Chem. Phys. 359 173

    [39]

    Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [40]

    Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y, Chen L 2013 Chin. Phy. B 22 067101

    [41]

    Ran W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phy. B 23 023102

    [42]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741

    [43]

    Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D, Zhang Z Y 2008 Phys. Rev. Lett. 100 206806

    [44]

    Cho J H, Park C R 2007 Catal. Today 120 407

    [45]

    An H, Liu C S, Zeng Z, Fan C, Ju X 2011 Appl. Phys. Lett. 98 173101

    [46]

    Li Y C, Zhou G, Li J, Gu B L, Duan W H 2008 J. Phys. Chem. C 112 19268

    [47]

    Frisch M J, et al. 2004 Gaussian 03. Revision E 01. Gaussian Inc, Wallingford CT

    [48]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [49]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [50]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [51]

    Lu T, Chen F W 2012 J. Comp. Chem. 33 580

    [52]

    Martin J M L, El-Yazal J, Francois J P 1996 Chem. Phys. Lett. 255 7

    [53]

    Jones R O, Seifert G 1997 Phys. Rev. Lett. 79 443

    [54]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [55]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [56]

    Chen Z F, Jiao H J, Bhl M, Hirsch A, Thiel W 2001 Theor. Chem. Acc. 106 352

    [57]

    Paulus B 2003 Phys. Chem. Chem. Phys. 5 3364

    [58]

    Malolepsza E, Witek H A, Irle S 2007 J. Phys. Chem. A111 6649

    [59]

    Peng S, Li X J, Zhang Y, Zhao S 2009 J. Struct. Chem. 50 1046

    [60]

    Moradi M, Peyghan A A, Bagheri Z, Kamfiroozi M 2012 J. Mol. Model 18 3535

  • [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Crabtree G W, Dresselhaus M S, Buchanan M V 2004 Phys. Today 57 39

    [3]

    Schlapbach L, Zttel A 2001 Natrue 414 353

    [4]

    Chen P, Zhu M 2008 Mater. Today 11 36

    [5]

    Graetz J 2009 Chem. Soc. Rev. 38 73

    [6]

    Jena P 2011 J. Phys. Chem. Lett. 2 206

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phy. B 23 067303

    [8]

    Bhatia S K, Myers A L 2006 Langmuir 221688

    [9]

    Lochan R C, Gordon M H 2006 Phys. Chem. Chem. Phys. 8 1357

    [10]

    Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608

    [11]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 129 8999

    [12]

    U. S. Department of Energy, Hydrogen, fuel cells program: FY 2014 Annual Progress Report

    [13]

    Yang J, Sudik A, Wolvertonb C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [14]

    Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem. Sect. A 105 21

    [15]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]

    [16]

    Lu Q L, Huang S G, Li Y D 2013 Acta Phys. Sin. 62 213601 (in Chinese) [卢其亮, 黄守国, 李宜德 2013 物理学报 62 213601]

    [17]

    Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 物理学报 64 096103]

    [18]

    Schur D V, Zaginaichenko S Y, Savenko A F, Bogolepov V A, Anikina N S, Zolotarenko A D, Matysina Z A, Veziroglu T N, Skryabina N E 2011 Int. J. Hydrogen Energy 36 1143

    [19]

    Henwood D, Carey J D 2007 Phys. Rev. B 75 245413

    [20]

    Zhou Z, Zhao J J, Chen Z F, Gao X P, Yan T Y, Wen B, Schleyer P V 2006 J. Phys. Chem. B 110 13363

    [21]

    Kim Y H, Zhao Y Y, Wiiliamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102

    [22]

    Guo Y H, Jiang K, Xu B, Xia Y. D, Yin J, Liu Z G 2012 J. Phys. Chem. C 116 13837

    [23]

    Pupysheva O V, Farajian A A, Yakobson B I 2008 Nano Lett. 8 767

    [24]

    Wu M H, Gao Y, Zhang Z Y, Zeng X C 2012 Nanoscale 4 915

    [25]

    Giri S, Lund F, Núñez A S, Toro-Labbé A 2013 J. Phys. Chem. C 117 5544

    [26]

    Li M, Li Y F, Zhou Z, Shen P W, Chen Z F 2009 Nano Lett. 9 1944

    [27]

    An H, Liu C S, Zeng Z 2011 Phys. Rev. B 83 115456

    [28]

    Tai T B, Nguyen M T 2013 Chem. Commun. 49 913

    [29]

    Durgun E, Jang Y R, Ciraci S 2007 Phys. Rev. B 76 073413

    [30]

    Venkataramanan N S, Belosludov R V, Note R, Sahara R, Mizuseki H, Kawazoe Y 2010 Chem. Phys. 377 54

    [31]

    Lee H, Li J, Zhou G, Duan W, Kim G, lhm J 2008 Phys. Rev. B 77 235101

    [32]

    Chung T C M, Jeong Y, Chen Q, Kleinhammes A, Wu Y 2008 J. Am. Chem. Soc. 130 6668

    [33]

    Chen X W, Yuan F, Gu Q F, Yu X B 2013 J. Mater. Chem. A 1 11705

    [34]

    Yildrim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [35]

    Zhao Y F, Kim Y H, Dillon A C, Heben J M, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [36]

    Shin W H, Yang S H, Goddard W A, Kang J K 2006 Appl. Phys. Lett. 88 053111

    [37]

    Sun Q, Wang Q, Jena P 2005 J. Am. Chem. Soc. 127 14582

    [38]

    Venkataramanan N S, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y 2009 Chem. Phys. 359 173

    [39]

    Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [40]

    Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y, Chen L 2013 Chin. Phy. B 22 067101

    [41]

    Ran W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phy. B 23 023102

    [42]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741

    [43]

    Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D, Zhang Z Y 2008 Phys. Rev. Lett. 100 206806

    [44]

    Cho J H, Park C R 2007 Catal. Today 120 407

    [45]

    An H, Liu C S, Zeng Z, Fan C, Ju X 2011 Appl. Phys. Lett. 98 173101

    [46]

    Li Y C, Zhou G, Li J, Gu B L, Duan W H 2008 J. Phys. Chem. C 112 19268

    [47]

    Frisch M J, et al. 2004 Gaussian 03. Revision E 01. Gaussian Inc, Wallingford CT

    [48]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [49]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [50]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [51]

    Lu T, Chen F W 2012 J. Comp. Chem. 33 580

    [52]

    Martin J M L, El-Yazal J, Francois J P 1996 Chem. Phys. Lett. 255 7

    [53]

    Jones R O, Seifert G 1997 Phys. Rev. Lett. 79 443

    [54]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [55]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [56]

    Chen Z F, Jiao H J, Bhl M, Hirsch A, Thiel W 2001 Theor. Chem. Acc. 106 352

    [57]

    Paulus B 2003 Phys. Chem. Chem. Phys. 5 3364

    [58]

    Malolepsza E, Witek H A, Irle S 2007 J. Phys. Chem. A111 6649

    [59]

    Peng S, Li X J, Zhang Y, Zhao S 2009 J. Struct. Chem. 50 1046

    [60]

    Moradi M, Peyghan A A, Bagheri Z, Kamfiroozi M 2012 J. Mol. Model 18 3535

  • [1] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] Ma Li-Juan, Han Ting, Gao Sheng-Qi, Jia Jian-Feng, Wu Hai-Shun. Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene. Acta Physica Sinica, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [3] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [4] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [5] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [6] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [7] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [8] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [9] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [11] Zhao Yin-Chang, Dai Zhen-Hong, Sui Peng-Fei, Zhang Xiao-Ling. Study of the high hydrogen storage capacity on 2D Li+BC3 complex. Acta Physica Sinica, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [12] Ruan Wen, Luo Wen-Lang, Yu Xiao-Guang, Xie An-Dong, Wu Dong-Lan. Hydrogen storage capacity of lithium decorated B6 cluster. Acta Physica Sinica, 2013, 62(5): 053103. doi: 10.7498/aps.62.053103
    [13] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [14] Huang Hai-Shen, Wang Xiao-Man, Zhao Dong-Qiu, Wu Liang-Fu, Huang Xiao-Wei, Li Yun-Cai. Hydrogen storage capacity of Y-coated Si@Al12 clusters. Acta Physica Sinica, 2012, 61(7): 073101. doi: 10.7498/aps.61.073101
    [15] Sun Lu-Shi, Zhang An-Chao, Xiang Jun, Guo Pei-Hong, Liu Zhi-Chao, Su Sheng. Density functional study of interation of Hg with small gold clusters. Acta Physica Sinica, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [16] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [17] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [18] Dai Wei, Tang Yong-Jian, Wang Chao-Yang, Sun Wei-Guo. Characteristics of hydrogen storage studied using homemade apparatus. Acta Physica Sinica, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [19] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [20] Liu Xiu-Ying, Wang Chao-Yang, Tang Yong-Jian, Sun Wei-Guo, Wu Wei-Dong, Zhang Hou-Qiong, Liu Miao, Yuan Lei, Xu Jia-Jing. Comparative theoretical study of hydrogen storage in single-walled boron-nitride and carbon nanotubes. Acta Physica Sinica, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
Metrics
  • Abstract views:  5172
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2015
  • Accepted Date:  18 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回