Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles studies on the properties of Cu2ZnSnS4 grain-boundaries due to photovoltaic effect

Fan Wei Zeng Zhi

Citation:

First-principles studies on the properties of Cu2ZnSnS4 grain-boundaries due to photovoltaic effect

Fan Wei, Zeng Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Microstructures and electronic structures of Cu2ZnSnS4 (CZTS) grain-boundaries (GB) are studied by the first-principles electronic structure method. Some special twist grain-boundaries have low grain-boundary energies and exhibit similar electronic structure as that in a perfect crystal. The twist grain-boundaries such as 3[221] and 6[221] have grain-boundary planes parallel to (112) plane, the easiest cleavage plane, so that they have small damages to the crystal structure and small influence on the properties of the materials. Grain-boundary plays two roles in CZTS thin-films: (1) capturing and trapping holes from p-n junctions, and (2) providing fast channels for transportation of majority carriers. As the majority of carriers, the positively charged holes need override a barrier before being trapped by a potential-well in the grain-boundary region. For the minority of carriers, the grain boundary is a high barrier to prevent electrons from transporting across it. The intrinsic nature of the potential barrier is not very clear. By calculating the distributions of static potentials across different grain boundaries of CZTS and also by comparing them with those across different surfaces, we find that the potential barriers at grain boundaries are the remnants of the potential barriers of surfaces, which trap the electrons in the bulk and prevent the electrons from escaping from the bulk to vacuum. When two surfaces get contact to form a grain boundary the corresponding surface barriers will be merged together as one potential barrier of the grain boundary. It is obvious that if a grain boundary intersects with the surface, the escaping work function near the grain boundary is lower than that near the prefect crystal surface. Experiment shows the coexistence of Sn4+ and Sn2+ions. The Sn4+ ions are located in the bulk by bonding 4 S atoms as neighbors. Our results show that Sn2+ ions can appear in the grain-boundary regions, on the surfaces or in the bulk with lattice defects so that Sn2+ ions have the lower coordination number by bonding 3 S atoms. The Sn atom is favored to be at the center of S octahedron with six neighboring S (or O) atoms in most sulfides (oxides) of tin. In CZTS, Sn atom is at the center of tetrahedron with 4 neighboring S atoms so that Sn atom is very active to move by structural relaxations. Most importantly the conduction-bands in CZTS are formed by the hybridizations between the s electrons of Sn and p electrons of S so that the conduction-bands of CZTS are sensitively dependent on the distributions and properties of Sn atoms. The appearing of Sn2+ ions and the strong structural relaxations of Sn atoms in grain-boundary regions and on surfaces induce extra in-gap states as a new source for the recombination of electron-hole pairs that are un-favored to the photo-voltage effects. Generally, the grain boundary plays a negative role in brittle photo-voltage materials such as Si and GaAs, and the positive role in ductile photo-voltage materials such as CdTe and CIGS (Cu(InGa)Se2). It means that the growth of the hard and brittle films is very difficult, the micro-cracks and micro-pores are easily created. Our calculations show that CdTe, CIGS and CZTS are all ductile with Poisson-ratio greater than 0.33. This means that CZTS can be used as the absorber of flexible solar cell. By comparing the optical absorption-coefficients of crystals, grain-boundaries, surfaces and nano-particles, we find that the internal surfaces in thin-films with high pore-ratio can create new energy-levels in band-gap, which enhances the recombination between electrons and holes and decreases the optical absorption-coefficients (1.3 eV). As a result, the high dense CZTS thin-film is required for high-efficient CZTS solar-cell. The positive role of grain boundary is more important if the CZTS film has the large, unique oriented grains and the uniform distribution of grain sizes. The simple and regular grain-boundary network is more beneficial to the coherent transport of majority carriers.
      Corresponding author: Fan Wei, fan@theory.issp.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB933702).
    [1]

    Ito K, Nakazawa T 1988 Japanese Journal of Applied Physics 27 2094

    [2]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res. Appl. 21 72

    [3]

    Xu Jia-Xiong, Yao Ruo-He 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [4]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [5]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [6]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [7]

    Strohm A, Eisenmann L, Gebhardt R K, Harding A, Schlötzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162

    [8]

    Jiang C -S, Noufi R, AbuShama J A, Ramanathan K, Moutinho H R, Pankow J, AI-Jassim M M 2004 Applied Physics Letters 84 3477

    [9]

    Azulay D, Millo O, Balberg I, Schock H W, Visoly-Fisher I, Cahen D 2007 Solar Energy Materials & Sollar Cells 91 85

    [10]

    Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603

    [11]

    Li J B, Chawla V, Clemens B M 2012 Adv. Mater. 24 720

    [12]

    Jeong A R, Jo W, Jung S, Gwak J, Yun J H 2011 Applied Physics Letters 99 082103

    [13]

    Haight R, Shao X Y, Wang W, Mitzi D B 2014 Applied Physics Letters 104 033902

    [14]

    Kosyak V, Karmarkar M A, Scarpulla M A 2012 Applied Physics Letters 100 263903

    [15]

    Mendis B G, Goodman M C J, Major J D, Tayler A A, Durose K, Halliday D P 2012 Journal of Applied Physics 112 124508

    [16]

    Persson C, Zunger A 2003 Phys. Rev. Lett. 91 266401

    [17]

    Persson C, Zunger A 2005 Applied Physics Letters 87 211904

    [18]

    Schmidt S S, Abou-Ras D, Sadewasser S, Yin W J, Feng C B Yan Y F 2012 Phys. Rev. Lett. 109 095506

    [19]

    Yan Y F, Jiang C S, Noufi R, Wei S H, Moutinho H R, Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504

    [20]

    Li J W, Mitzi D B, Shenoy V B 2011 ACSNANO 5 8613

    [21]

    Medvedeva N I, Shalaeva E V, Kuznetsov M V, Yakushev M V 2006 Phys. Rev. B 73 035207

    [22]

    Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P, Liu L 2014 J. Phys. D: Appl. Phys. 47 075304

    [23]

    Bao W, Ichimura M 2012 International Journal of Photoenergy,ArticleID 61982

    [24]

    Xu P, Chen S Y, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Gajdoš M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

    [29]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials, Clarendon Press, Oxford

    [30]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [31]

    Fan W, Liu D Y, Zeng Z 2014 Physica C 497 110

    [32]

    Grossberg M, Raadik T, Raudoja J, Krustok J 2014 Current Applied Phsyics 14 447

    [33]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [34]

    Yang C Y, Qin M S, Wang Y M, Wan D Y, Huang F Q, Lin J H 2013 Sci. Rep. 3, 1286

    [35]

    Fan Wei, Zeng Zhi 2014 Acta Phys. Sin. 63 047503 (in Chinese) [范巍, 曾雉 2014 物理学报 63 047503]

    [36]

    Liu Hao, Xue Yu-Ming, Qiao Zai-Xiang, Li Wei, Zhang Chao, Yin Fu-Hong, Feng Shao-Jun 2015 Acta Phys. Sin.64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801]

    [37]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 物理学报 63 018801]

    [38]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1]

    Ito K, Nakazawa T 1988 Japanese Journal of Applied Physics 27 2094

    [2]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res. Appl. 21 72

    [3]

    Xu Jia-Xiong, Yao Ruo-He 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [4]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [5]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [6]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [7]

    Strohm A, Eisenmann L, Gebhardt R K, Harding A, Schlötzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162

    [8]

    Jiang C -S, Noufi R, AbuShama J A, Ramanathan K, Moutinho H R, Pankow J, AI-Jassim M M 2004 Applied Physics Letters 84 3477

    [9]

    Azulay D, Millo O, Balberg I, Schock H W, Visoly-Fisher I, Cahen D 2007 Solar Energy Materials & Sollar Cells 91 85

    [10]

    Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603

    [11]

    Li J B, Chawla V, Clemens B M 2012 Adv. Mater. 24 720

    [12]

    Jeong A R, Jo W, Jung S, Gwak J, Yun J H 2011 Applied Physics Letters 99 082103

    [13]

    Haight R, Shao X Y, Wang W, Mitzi D B 2014 Applied Physics Letters 104 033902

    [14]

    Kosyak V, Karmarkar M A, Scarpulla M A 2012 Applied Physics Letters 100 263903

    [15]

    Mendis B G, Goodman M C J, Major J D, Tayler A A, Durose K, Halliday D P 2012 Journal of Applied Physics 112 124508

    [16]

    Persson C, Zunger A 2003 Phys. Rev. Lett. 91 266401

    [17]

    Persson C, Zunger A 2005 Applied Physics Letters 87 211904

    [18]

    Schmidt S S, Abou-Ras D, Sadewasser S, Yin W J, Feng C B Yan Y F 2012 Phys. Rev. Lett. 109 095506

    [19]

    Yan Y F, Jiang C S, Noufi R, Wei S H, Moutinho H R, Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504

    [20]

    Li J W, Mitzi D B, Shenoy V B 2011 ACSNANO 5 8613

    [21]

    Medvedeva N I, Shalaeva E V, Kuznetsov M V, Yakushev M V 2006 Phys. Rev. B 73 035207

    [22]

    Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P, Liu L 2014 J. Phys. D: Appl. Phys. 47 075304

    [23]

    Bao W, Ichimura M 2012 International Journal of Photoenergy,ArticleID 61982

    [24]

    Xu P, Chen S Y, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Gajdoš M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

    [29]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials, Clarendon Press, Oxford

    [30]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [31]

    Fan W, Liu D Y, Zeng Z 2014 Physica C 497 110

    [32]

    Grossberg M, Raadik T, Raudoja J, Krustok J 2014 Current Applied Phsyics 14 447

    [33]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [34]

    Yang C Y, Qin M S, Wang Y M, Wan D Y, Huang F Q, Lin J H 2013 Sci. Rep. 3, 1286

    [35]

    Fan Wei, Zeng Zhi 2014 Acta Phys. Sin. 63 047503 (in Chinese) [范巍, 曾雉 2014 物理学报 63 047503]

    [36]

    Liu Hao, Xue Yu-Ming, Qiao Zai-Xiang, Li Wei, Zhang Chao, Yin Fu-Hong, Feng Shao-Jun 2015 Acta Phys. Sin.64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801]

    [37]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 物理学报 63 018801]

    [38]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [3] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [4] Li Jin, Wang Hai-Yan, Li You, Zhang Qiu-Yue, Jia Yu. First-principle study of the optical absorption spectra of chalcogen on D-A and D--A copolymers. Acta Physica Sinica, 2016, 65(10): 103101. doi: 10.7498/aps.65.103101
    [5] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [7] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [9] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [10] Chen Xuan, Yuan Yong-Bo, Deng Kai-Ming, Xiao Chuan-Yun, Lu Rui-Feng, Kan Er-Jun. Density functional study on the geometric property of MnxSny(x=2,3,4; y=18,24,30). Acta Physica Sinica, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [11] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [14] Gao Hong, Zhu Wei-Hua, Tang Chun-Mei, Geng Fang-Fang, Yao Chang-Da, Xu Yun-Ling, Deng Kai-Ming. Density functional calculation on the geometric structure and electronic properties of the endohedral fullerene N2@C60. Acta Physica Sinica, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [16] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  5262
  • PDF Downloads:  319
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2015
  • Accepted Date:  16 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回