Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Neutron holography simulation based on different sample rotations

Tang Bin Cao Chao Yin Wei Sun Yong Liu Bin

Citation:

Neutron holography simulation based on different sample rotations

Tang Bin, Cao Chao, Yin Wei, Sun Yong, Liu Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Neutron holography is a new imaging technique based on the recording of the interference pattern of two coherent waves emitted by the same source, which allows observing the spatial order of microscopic objects like molecules or atoms in crystal sample. Two approaches can be used in neutron holography measurements. One is called inside-source holography, in which both the reference wave and object wave come from embedded atoms in the sample and propagate toward the detector outside the sample. The second approach called inside-detector holography is the inverse method of inside-source holography, in this case the reference wave is the initial neutron beam coming from a distant source outside the sample, while the atoms embedded in the sample act as detectors. In an ideal inside-source holography experiment, the sample should be fixed and the detector moves on a sphere, which is not practical because the detector system is usually heavy and far from the sample. In order to minimize the operation space, the detector always moves on a circle around sample or is located at a fixed position, while the sample rotates in an appropriate way to imitate the motion of the detector in a sphere. However, the orientation of the sample relative to the incident neutron beam is changed during sample rotation, and part of the inverse hologram is recorded together with the inside-detector hologram, which can cause distortion in the holographic reconstruction. In this paper, we simulate neutron holograms and reconstructions based on three different sample/detector rotations. In the first case, the detector moves on a circle, while the sample rotates about an axis perpendicular to the detector moving surface. In the second case, the detector is fixed, while the sample rotates around two perpendicular axes, the θ axis rotating the sample through πradians is perpendicular to the incident beam-detector plane, while the θ axis rotating the sample through 2πradians moves on a circle parallel to the incident beam-detector plane, this rotation can be carried out on a 3-axis spectrometry. In the third case, the detector is also fixed and the sample rotates around two perpendicular axes, but the θ axis is parallel to the sample-detector direction, while the θ axis moves on a circle perpendicular to the incident beam-detector plane, this rotation can be carried out on a 4-cycle spectrometry. The distortions and corresponding correcting methods of three kinds of rotations are discussed. The result shows that most distortions can be corrected by using special measurement or reconstruction techniques. Furthermore, pure sample rotation based on 3-axis spectrometer can achieve the best reconstruction result, so this rotation approach is preferred if conditions permit.
      Corresponding author: Cao Chao, ccldyq@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375156) and the Neutron Physics Laboratory, China Academy of Engineering Physics (Grant No. 2012BB03).
    [1]

    Arif M 2008 Neutron Radiography: Proceedings of the Eighth World Conference (Lancaster: Destech Publications)

    [2]

    Cao C, Wang S, Tang K, Yin W, Wu Y 2014 Acta Phys. Sin. 63 182801 (in Chinese) [曹超, 王胜, 唐科, 尹伟, 吴洋 2014 物理学报 63 182801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 122801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 物理学报 62 122801]

    [4]

    Cser L, Krexner G, Török G 2001 Europhys. Lett. 54 747

    [5]

    Sur B, Rogge R B, Hammond R P, Anghel N P, Katsaras J 2001 Nature 414 525

    [6]

    Cser L, Török Gy, Krexner G, Faragó B 2002 Phys. Rev. Lett. 89 175504

    [7]

    Cser L, Török Gy, Krexner G, Prem M, Sharkov I 2004 Appl. Phys. Lett. 85 1149

    [8]

    Hayashi K, Ohoyama K, Orimo S, Nakamori Y, Takahashi H, Shibata K 2008 Jpn. J. Appl. Phys. 47 2291

    [9]

    Markó M, Krexner G, Schefer J, Szakál A, Cser L 2010 New J. Phys. 12 063036

    [10]

    Cser L, Krexner G, Markó M, Sharkov I, Török Gy 2006 Phys. Rev. Lett. 97 255501

    [11]

    Marko M, Szakal A, Török Gy, Cser L 2010 Rev.Sci. Instrum. 81 105110

    [12]

    Tegze M, Faigel G, Marchesini S, Belakovsky M, Chumakov A I 1999 Phys. Rev. Lett. 82 4847

    [13]

    Tegze M, Faigel G 1996 Nature 380 49

    [14]

    Xie H L, Gao H Y, Chen J W, Wang Y, Zhu P P, Xiong S S, Xian D C, Xu Z Z 2003 Acta Phys. Sin. 52 2223 (in Chinese) [谢红兰, 高鸿奕, 陈建文, 王越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展 2003 物理学报 52 2223]

    [15]

    Cao C, Sun Y, Tang B, Huo H Y 2013 Nucl. Tech. 36 010202 (in Chinese) [曹超, 孙勇, 唐彬, 霍合勇 2013 核技术 36 010202]

    [16]

    Cao C, Tang B, Sun Y, Li H, Liu B, Huo H Y 2015 Atomic Energy Sci. Technol. 49 1109 (in Chinese) [曹超, 唐彬, 孙勇, 李航, 刘斌, 霍合勇 2015 原子能科学技术 49 1109]

    [17]

    Li S L, Dai P C 2011 Physics 40 33 (in Chinese) [李世亮, 戴鹏程 2011 物理 40 33]

    [18]

    Li M J, Liu X L, Liu Y T, Tian G F, Wu L Q, Sun K, Chen D F 2014 Atomic Energy Sci. Technol. 48 532 (in Chinese) [李眉娟, 刘晓龙, 刘蕴韬, 田庚方, 吴立齐, 孙凯, 陈东风 2014 原子能科学技术 48 532]

    [19]

    Cser L, Faragó B, Krexner G, Sharkov I, Török Gy 2004 Physica B 350 113

  • [1]

    Arif M 2008 Neutron Radiography: Proceedings of the Eighth World Conference (Lancaster: Destech Publications)

    [2]

    Cao C, Wang S, Tang K, Yin W, Wu Y 2014 Acta Phys. Sin. 63 182801 (in Chinese) [曹超, 王胜, 唐科, 尹伟, 吴洋 2014 物理学报 63 182801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 122801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 物理学报 62 122801]

    [4]

    Cser L, Krexner G, Török G 2001 Europhys. Lett. 54 747

    [5]

    Sur B, Rogge R B, Hammond R P, Anghel N P, Katsaras J 2001 Nature 414 525

    [6]

    Cser L, Török Gy, Krexner G, Faragó B 2002 Phys. Rev. Lett. 89 175504

    [7]

    Cser L, Török Gy, Krexner G, Prem M, Sharkov I 2004 Appl. Phys. Lett. 85 1149

    [8]

    Hayashi K, Ohoyama K, Orimo S, Nakamori Y, Takahashi H, Shibata K 2008 Jpn. J. Appl. Phys. 47 2291

    [9]

    Markó M, Krexner G, Schefer J, Szakál A, Cser L 2010 New J. Phys. 12 063036

    [10]

    Cser L, Krexner G, Markó M, Sharkov I, Török Gy 2006 Phys. Rev. Lett. 97 255501

    [11]

    Marko M, Szakal A, Török Gy, Cser L 2010 Rev.Sci. Instrum. 81 105110

    [12]

    Tegze M, Faigel G, Marchesini S, Belakovsky M, Chumakov A I 1999 Phys. Rev. Lett. 82 4847

    [13]

    Tegze M, Faigel G 1996 Nature 380 49

    [14]

    Xie H L, Gao H Y, Chen J W, Wang Y, Zhu P P, Xiong S S, Xian D C, Xu Z Z 2003 Acta Phys. Sin. 52 2223 (in Chinese) [谢红兰, 高鸿奕, 陈建文, 王越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展 2003 物理学报 52 2223]

    [15]

    Cao C, Sun Y, Tang B, Huo H Y 2013 Nucl. Tech. 36 010202 (in Chinese) [曹超, 孙勇, 唐彬, 霍合勇 2013 核技术 36 010202]

    [16]

    Cao C, Tang B, Sun Y, Li H, Liu B, Huo H Y 2015 Atomic Energy Sci. Technol. 49 1109 (in Chinese) [曹超, 唐彬, 孙勇, 李航, 刘斌, 霍合勇 2015 原子能科学技术 49 1109]

    [17]

    Li S L, Dai P C 2011 Physics 40 33 (in Chinese) [李世亮, 戴鹏程 2011 物理 40 33]

    [18]

    Li M J, Liu X L, Liu Y T, Tian G F, Wu L Q, Sun K, Chen D F 2014 Atomic Energy Sci. Technol. 48 532 (in Chinese) [李眉娟, 刘晓龙, 刘蕴韬, 田庚方, 吴立齐, 孙凯, 陈东风 2014 原子能科学技术 48 532]

    [19]

    Cser L, Faragó B, Krexner G, Sharkov I, Török Gy 2004 Physica B 350 113

  • [1] Wen Zhi-Wen, Qi Hui-Rong, Zhang Yu-Lian, Wang Hai-Yun, Liu Ling, Wang Yan-Feng, Zhang Jian, Li Yu-Hong, Sun Zhi-Jia. Development of high-pressure multi-wire proportional chamber neutron detector for the China Spallation Neutron Source multipurpose reflectometer. Acta Physica Sinica, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [2] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [3] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [4] Shang Wan-Li, Zhu Tuo, Kuang Long-Yu, Zhang Wen-Hai, Zhao Yang, Xiong Gang, Yi Rong-Qing, Li San-Wei, Yang Jia-Min. Uncertainty analysis of the measured spectrum obtained using transmission grating spectrometer. Acta Physica Sinica, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [5] Yuan Cao-Jin, Zhai Hong-Chen, Wang Xiao-Lei, Wu Lan. Three-dimensional surface contouring of reflecting micro-object by digital holography with short-coherence light source. Acta Physica Sinica, 2007, 56(1): 218-223. doi: 10.7498/aps.56.218
    [6] Zhu Pei-Ping, Wang Jun-Yue, Wu Zi-Yu, Tian Yu-Lian, Jia Quan-Jie, Hu Tian-Dou, Wu Xiang, Chu Wang-Sheng, Li Gang, Xian Ding-Chang. Principle and analytical description of inside source holography. Acta Physica Sinica, 2004, 53(8): 2526-2533. doi: 10.7498/aps.53.2526
    [7] Yang Jia-Min, Ding Yao-Nan, Sun Ke-Xu, Cheng Jin-Xiu, Jiang Shao-En, Zheng Zhi-Jian, Zhang Wen-Hai. . Acta Physica Sinica, 2000, 49(4): 747-750. doi: 10.7498/aps.49.747
    [8] LI GENG-YING, WU XUE-WEN. HIGH-RESOLUTION NMR SPECTROSCOPIC STUDY ON THE CENTRAL TRANSITION OF SPIN-3/2 QUADRUPOLAR NUCLEI IN POWDERS. Acta Physica Sinica, 1990, 39(11): 1848-1853. doi: 10.7498/aps.39.1848
    [9] LI ZHU-QI, KUAN JING-HUI, WU SHAN-LING, YANG TONG-HUA, HE MIN, LU TING, CHENG ZHI-XU, CHEN GUI-YING, YE CHUN-TANG. A ROTATING CRYSTAL NEUTRON TIME-OF-FLIGHT SPECTRO-METER FOR CONDENSED MATTER INVESTIGATION. Acta Physica Sinica, 1980, 29(11): 1462-1470. doi: 10.7498/aps.29.1462
    [10] CHEN YAN-SONG, WANG YU-TANG, DONG BI-ZHEN. A NEW METHOD OF COLOR HOLOGRAPHY. Acta Physica Sinica, 1978, 27(6): 723-728. doi: 10.7498/aps.27.723
    [11] DONG BI-ZHEN, CHEN ZHENG-HAO, CHEN YAN-SONG, DENG DAO-QUN, JU RUI. THE WIDE-ANGLE HOLOGRAPHY. Acta Physica Sinica, 1978, 27(4): 483-486. doi: 10.7498/aps.27.483
    [12] MEI J. Y., CHEN H. F., TAN B. L., CHEN J. F., FENG J.. A SIMPLIFIED 180°FOCUSING β RAY SPECTROMETER. Acta Physica Sinica, 1966, 22(5): 547-553. doi: 10.7498/aps.22.547
    [13] ЧЕРЕНКОВСКИЕ СПЕКТРОМЕТРЫ ПОЛНОГО ПОГЛОЩЕНИЯ. Acta Physica Sinica, 1963, 19(4): 225-238. doi: 10.7498/aps.19.225
    [14] РАЗРЕШАЮЩАЯ ШИРИНА КРИСТАЛЛИЧЕСКОГО НЕЙТРОННОГО СПЕКТРОМЕТРА С ПЛОСКИМ КРИСТАЛЛОМ. Acta Physica Sinica, 1963, 19(8): 477-482. doi: 10.7498/aps.19.477
    [15] . Acta Physica Sinica, 1962, 18(10): 540-544. doi: 10.7498/aps.18.540
    [16] . Acta Physica Sinica, 1962, 18(9): 486-490. doi: 10.7498/aps.18.486
    [17] π-介子星裂能谱仪. Acta Physica Sinica, 1961, 17(2): 104-107. doi: 10.7498/aps.17.104
    [18] β-СПЕКТРОМЕТР С ПРОМЕЖУТОЧНЫМ ИЗОБРАЖЕНИЕМ. Acta Physica Sinica, 1961, 17(6): 255-262. doi: 10.7498/aps.17.255
    [19] . Acta Physica Sinica, 1960, 16(8): 486-490. doi: 10.7498/aps.16.486
    [20] . Acta Physica Sinica, 1960, 16(4): 245-246. doi: 10.7498/aps.16.245
Metrics
  • Abstract views:  4367
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  10 June 2015
  • Accepted Date:  19 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回