Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin-orbit interaction of light in metasuface

Yi Xu-Nong Li Ying Ling Xiao-Hui Zhang Zhi-You Fan Dian-Yuan

Citation:

Spin-orbit interaction of light in metasuface

Yi Xu-Nong, Li Ying, Ling Xiao-Hui, Zhang Zhi-You, Fan Dian-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Spin-orbit interaction of light in metasurface is investigated in this paper. We theoretically analyze the transfromation of circularly and linearly polarized light by metasurface with Jones matrix. The results indicate that the interaction of light with spatially inhomogeneous and anisotropic metasurface leads to a coupling of spin-orbital angular momentum. The nanostructrues of metasurfaces are arranged at a definite rate of rotation, which induces an additional space-variant geometrical phase (i.e., Pancharatnam-Berry phase). The Pancharatnam-Berry phase is dependent on the polarization handedness of the incident wave. This characteristic can result in spin-dependent split. A left/right-circular polarized beam is transfromed into a right/left-circular polarized vortex beam by the metasurfaces. In the convertion process, the sign of spin angular momentum of photons is inversed. At the same time, each photon can acquire orbital angular momentum from the inhomogeneous and anisotropic media. The case that a linearly polarized beam inputs the metasurfaces also is considered. A linearly polarized wave can be regarded as the linear superposition of left-circular and right-circular polarized wave. The two circularly plarized components are respectively converted into circularly polarized vortex beam with reverse polarization handedness. The coherent superposition of the two output components forms a cylindrical vector beam. Finally, we adopt the combination of a metasurface and spiral phase plate to verify the theoretical results. The vortex phase can be eliminated by the spiral phase plate when a left-circular polarized light is input, while topological charge of vortex phase will increase when a right-circular polarized light is input. For the case of inputting linearly polarized beam, one of the two outputing circularly polarized components can be eliminated by the helical phase through using the spiral phase plate, while the topological charge of another component increases. It results in the fact that the intensity pattern splits into two parts. The central part does not have helical phase, while the ambient ring-shaped intensity has helical phase. In order to judge the polarization handedness of output wave, the Stokes parameter S3 is measured by inserting a Glan laser polarizer and a quarter wave plate behind the spiral phase plate. The experimental results are in good agreement with theoretical analyses. These results are helpful for understanding the manipulation of light with metasurface.
      Corresponding author: Li Ying, queenly@vip.sina.com
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61490713) and the Foundation of Hubei Educational Committee, China (Grant No. Q20132703).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905

    [3]

    Zhao Y, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901

    [4]

    Luo H, Ren Z, Shu W, Li F 2007 Appl. Phys. A 87 245

    [5]

    Li L, Wang J, Du H, Wang J, Qu S 2015 Chin. Phys. B 24 064201

    [6]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [7]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1289

    [8]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [9]

    Niv A, Biener G, Kleiner V, Hasman E 2003 Opt. Lett. 28 510

    [10]

    Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933

    [11]

    Brasselet E, Gervinskas G, Seniutinas G, Juodkazis S 2013 Phys. Rev. Lett. 111 193901

    [12]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [13]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [14]

    Wang X, Ding J, Ni W, Guo C, Wang H 2007 Opt. Lett. 32 3549

    [15]

    Cai Y, Lin Q, Eyyuboğlu H T, Baykal Y 2008 Opt. Express 16 7665

    [16]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [17]

    Dai H, Liu Y, Luo D, Sun X 2011 Opt. Lett. 36 1617

    [18]

    Chen H, Hao J, Zhang B, Xu J, Ding J, Wang H 2011 Opt. Lett. 36 3137

    [19]

    Deng D, Chen C, Zhao X 2012 Appl. Phys. B 110 433

    [20]

    Qian X, Zhu W, Rao R 2015 Chin. Phys. B 24 044201

    [21]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1

    [22]

    Wang Z, Zhang N, Yuan X 2011 Opt. Express 19 482

    [23]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [24]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [25]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [26]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [27]

    Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S 2014 Appl. Phys. Lett. 105 151101

    [28]

    Milione G, Sztul H I, Nolan D A, Alfano R R 2011 Phys. Rev. Lett. 98 053601

    [29]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [30]

    Niv A, Gorodetski Y, Kleiner V, Hasman E 2008 Opt. Lett. 33 2910

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905

    [3]

    Zhao Y, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901

    [4]

    Luo H, Ren Z, Shu W, Li F 2007 Appl. Phys. A 87 245

    [5]

    Li L, Wang J, Du H, Wang J, Qu S 2015 Chin. Phys. B 24 064201

    [6]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [7]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1289

    [8]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [9]

    Niv A, Biener G, Kleiner V, Hasman E 2003 Opt. Lett. 28 510

    [10]

    Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933

    [11]

    Brasselet E, Gervinskas G, Seniutinas G, Juodkazis S 2013 Phys. Rev. Lett. 111 193901

    [12]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [13]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [14]

    Wang X, Ding J, Ni W, Guo C, Wang H 2007 Opt. Lett. 32 3549

    [15]

    Cai Y, Lin Q, Eyyuboğlu H T, Baykal Y 2008 Opt. Express 16 7665

    [16]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [17]

    Dai H, Liu Y, Luo D, Sun X 2011 Opt. Lett. 36 1617

    [18]

    Chen H, Hao J, Zhang B, Xu J, Ding J, Wang H 2011 Opt. Lett. 36 3137

    [19]

    Deng D, Chen C, Zhao X 2012 Appl. Phys. B 110 433

    [20]

    Qian X, Zhu W, Rao R 2015 Chin. Phys. B 24 044201

    [21]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1

    [22]

    Wang Z, Zhang N, Yuan X 2011 Opt. Express 19 482

    [23]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [24]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [25]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [26]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [27]

    Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S 2014 Appl. Phys. Lett. 105 151101

    [28]

    Milione G, Sztul H I, Nolan D A, Alfano R R 2011 Phys. Rev. Lett. 98 053601

    [29]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [30]

    Niv A, Gorodetski Y, Kleiner V, Hasman E 2008 Opt. Lett. 33 2910

  • [1] Fan Hai-Ling, Guo Zhi-Jian, Li Ming-Qiang, Zhuo Hong-Bin. Numerical study of self-focusing and filament formation of intense vortex beams in plasmas. Acta Physica Sinica, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [2] Jiang Chi, Geng Tao. The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle. Acta Physica Sinica, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [3] Bai Zhan-Bin, Wang Rui, Zhou Ya-Zhou, Wu Tian-Ru, Ge Jian-Lei, Li Jing, Qin Yu-Yuan, Fei Fu-Cong, Cao Lu, Wang Xue-Feng, Wang Xin-Ran, Zhang Shuai, Sun Li-Ling, Song You, Song Feng-Qi. Selective enhancement of Kane Mele-type spin-orbit interaction in graphene. Acta Physica Sinica, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han. Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate. Acta Physica Sinica, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [5] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [6] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [7] Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng. Spiral spectrum analysis and application ofcoherent synthetic vortex beams. Acta Physica Sinica, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [8] Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin. Generation of Bessel-Gaussian vortex beam by combining technology. Acta Physica Sinica, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [9] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] Shi Jian-Zhen, Xu Tian, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of no-diffraction hollow vertex beams with adjustable angular momentum by wave plate phase plates. Acta Physica Sinica, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [11] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [12] Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of vortex beams by the four-step phase plates. Acta Physica Sinica, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [13] Zhou Qiao-Qiao, Shi Jian-Zhen, Ji Xian-Ming, Yin Jian-Ping. Study on the properties of vector beams generated by a curved wave plate in the strong-focusing regime. Acta Physica Sinica, 2015, 64(5): 053702. doi: 10.7498/aps.64.053702
    [14] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [15] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [16] Zhang Jin, Zhou Xin-Xing, Luo Hai-Lu, Wen Shuang-Chun. Cross polarization effects of vortex beam in reflection. Acta Physica Sinica, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [17] Ding Pan-Feng, Pu Ji-Xiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation. Acta Physica Sinica, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [18] Wang Zheng, Gao Chun-Qing, Xin Jing-Tao. Focusing properties of the high order vector beam by a high numerical aperture lens. Acta Physica Sinica, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [19] Ding Pan-Feng, Pu Ji-Xiong. Propagation of Laguerre-Gaussian vortex beam. Acta Physica Sinica, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [20] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
Metrics
  • Abstract views:  6250
  • PDF Downloads:  361
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2015
  • Accepted Date:  17 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回