Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of BaFe12O19 nanoparticles doped on the properties of single domain GdBa2Cu3O7-δ high-temperature superconductors

Zhang Xiao-Juan Zhang Yu-Feng Peng Li-Qi Zhou Wen-Li Xu Yan Zhou Di-Fan Izumi Mitsuru

Citation:

Effect of BaFe12O19 nanoparticles doped on the properties of single domain GdBa2Cu3O7-δ high-temperature superconductors

Zhang Xiao-Juan, Zhang Yu-Feng, Peng Li-Qi, Zhou Wen-Li, Xu Yan, Zhou Di-Fan, Izumi Mitsuru
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The flux pinning performance of the superconductor is important for the applications of the GdBa2Cu3O7-δ superconductor bulk. To introduce the suitable secondary phase into the GdBa2Cu3O7-δ matrix is an important way to enhance the performance of flux pinning. By using top-seeded melt texture growth process, single domain GdBa2Cu3O7-δ superconductor bulks (20 mm in diameter) doping with different quantities of BaFe12O19 nano-particles (12O19(x=0, 0.2 mol%, 0.4 mol%, 0.8 mol%)+ 10 wt% Ag2O+ 0.5 wt% Pt. The effects of different quantities of BaFe12O19 nano-particles on superconducting properties and microstructure are also investigated. The result shows that the critical current density, JC, with 0.2 mol% BaFe12O19 additions reaches a maximum value in the zero field, which is about 5.5 × 104 A/cm2. And the critical current density JC, almost increases in the whole field compared with those of the undoped bulks. The microstructure and chemical composition of GdBa2Cu3O7-δ bulk with BaFe12O19 nano-particles are implemented by the SEM-EDS technique. It is found that BaFe12O19 nano-particles keeps a similar form to that of the precursor in the final superconductor bulk. The average size of Gd2BaCuO5 particles is reduced from 1.4 μm in the undoped bulk to 0.79 μm in the bulk with 0.2 mol% BaFe12O19 nano-particles. We suggest that BaFe12O19 nano-particles may form effective magnetic flux centers in the bulks, which affects the homogeneous distribution and refinement of Gd2BaCuO5 particles. Therefore, the improvements in the critical current density and the trapped field are observed in the GdBa2Cu3O7-δ bulk with low-level doped content. The superconducting transition temperature TC, can be maintained at around 92.5 K. However, with the addition of 0.4 mol% BaFe12O19 nano-particles, the critical current density and superconducting transition temperature decrease obviously. It indicates that the excessive addition of BaFe12O19 nano-particles may affect the superconductivity properties to reduce the critical current density, JC. The result indicates that the low-level content BaFe12O19 nano-particles can be an effective second phase for the improvement of the GdBa2Cu3O7-δ superconductor bulks, which is very important for the further enhancing the superconducting properties of GdBa2Cu3O7-δ bulks by introducing the flux pinning of nano-particles.
      Corresponding author: Zhang Yu-Feng, 2009000018@shiep.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004129, 11204171), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Education Ministry of China (SRF for ROCS, SEM), the Innovation Program of Shanghai Municipal Education Commission, China (Grant Nos. 11YZ197, 12ZZ174), the “Chen Guang” Project of Shanghai Educational Development Foundation, China (Grant No. 12CG63), and the Shanghai University Scientific and Cultivation for Outstanding Young Teachers in Special Fund, China (Grant No. sdl10005).
    [1]

    Zhou D F, Izumi M, Miki M 2012 Supercond. Sci. Technol. 25 103001

    [2]

    Werfel F, Floegel U, Rothfeld D R 2012 Supercond. Sci. Technol. 25 014007

    [3]

    Wang Q L 2008 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp20-70 (in Chinese) [王秋良 2008 高磁场超导磁体科学 (北京: 科学出版社)第20–70页]

    [4]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿, 姚忻, 李刚 2006 物理学报 55 844]

    [5]

    Inanira F, Yildizb S, Ozturkc K, Celebic S 2013 Chin. Phys. B 22 077402

    [6]

    Cardwell D A, Babu N H, Shi Y H, Iida K 2006 Supercond. Sci. Technol. 197 S510

    [7]

    Babu N H, Reddy E S, Cardwell D A 2003 Supercond. Sci. Technol. 16 L44

    [8]

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102]

    [9]

    Li J W, Yang W M, Wang M, Guo Y X, Zhong L F 2015 J. Supercond. Nov. Magn. 28 1725

    [10]

    Hu S B, Xu K X, Cao Y, Zuo P X, Lian B W 2012 Chin. J. Low Temperature Phys. 34 297 (in Chinese) [胡顺波, 徐克西, 曹越, 左鹏翔, 连博文 2012低温物理学报 34 297]

    [11]

    Zhou D F, Izumi M, Fujimoto T, Zhang Y F, Zhou W L, Xu K 2015 IEEE Trans. Appl. Supercond. 25 6800204

    [12]

    Muralidhar M, Sakai N, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [13]

    Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M 2011 Supercond. Sci. Technol. 24 085001

    [14]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401]

    [15]

    Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.: Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰2012 中国科学: 物理学 力学 天文学 42 346]

    [16]

    Wimbush S C, Durrell J H, Tsai C F, Wang H, Jia Q X, Blamire M G, MacManus-Driscoll J L 2010 Supercond. Sci. Technol. 23 045019

    [17]

    Li B Z, Zhou D F, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014 Physica C 496 28

    [18]

    Zhang Y, Izumi M, Li Y J, Murakami M, Gao T, Liu Y S, Li P L 2011 Physica C 471 840

    [19]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489

    [20]

    Tang Y N, Yang W M, Liang W, Wang M, Zhang X J, Li J W, Wang G F 2012 Chin. J. Low Temperature Phys. 34 211 (in Chinese) [唐艳妮, 杨万民, 梁伟, 王妙, 张晓菊, 李佳伟, 王高峰 2012低温物理学报 34 211]

    [21]

    Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484

    [22]

    Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042

    [23]

    Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I 2006 Physica C 445 357

    [24]

    Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [25]

    Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863

    [26]

    Hara S, Zhou D F, Li B Z, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804

    [27]

    Li B Z, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012 Physica C 475 51

    [28]

    Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015 Physica C 510 54

    [29]

    Zhang Y F, Peng L Q, Zhou W L, Zhou X J, Jia L L, Izumi M 2015 IOP Conf. Series: Materials Science and Engineering 87 012077

    [30]

    Zhang Y F, Izumi M, Kimura Y, Xu Y 2009 Physica C: Supercond. Appl. 469 1169

  • [1]

    Zhou D F, Izumi M, Miki M 2012 Supercond. Sci. Technol. 25 103001

    [2]

    Werfel F, Floegel U, Rothfeld D R 2012 Supercond. Sci. Technol. 25 014007

    [3]

    Wang Q L 2008 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp20-70 (in Chinese) [王秋良 2008 高磁场超导磁体科学 (北京: 科学出版社)第20–70页]

    [4]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿, 姚忻, 李刚 2006 物理学报 55 844]

    [5]

    Inanira F, Yildizb S, Ozturkc K, Celebic S 2013 Chin. Phys. B 22 077402

    [6]

    Cardwell D A, Babu N H, Shi Y H, Iida K 2006 Supercond. Sci. Technol. 197 S510

    [7]

    Babu N H, Reddy E S, Cardwell D A 2003 Supercond. Sci. Technol. 16 L44

    [8]

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102]

    [9]

    Li J W, Yang W M, Wang M, Guo Y X, Zhong L F 2015 J. Supercond. Nov. Magn. 28 1725

    [10]

    Hu S B, Xu K X, Cao Y, Zuo P X, Lian B W 2012 Chin. J. Low Temperature Phys. 34 297 (in Chinese) [胡顺波, 徐克西, 曹越, 左鹏翔, 连博文 2012低温物理学报 34 297]

    [11]

    Zhou D F, Izumi M, Fujimoto T, Zhang Y F, Zhou W L, Xu K 2015 IEEE Trans. Appl. Supercond. 25 6800204

    [12]

    Muralidhar M, Sakai N, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [13]

    Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M 2011 Supercond. Sci. Technol. 24 085001

    [14]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401]

    [15]

    Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.: Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰2012 中国科学: 物理学 力学 天文学 42 346]

    [16]

    Wimbush S C, Durrell J H, Tsai C F, Wang H, Jia Q X, Blamire M G, MacManus-Driscoll J L 2010 Supercond. Sci. Technol. 23 045019

    [17]

    Li B Z, Zhou D F, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014 Physica C 496 28

    [18]

    Zhang Y, Izumi M, Li Y J, Murakami M, Gao T, Liu Y S, Li P L 2011 Physica C 471 840

    [19]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489

    [20]

    Tang Y N, Yang W M, Liang W, Wang M, Zhang X J, Li J W, Wang G F 2012 Chin. J. Low Temperature Phys. 34 211 (in Chinese) [唐艳妮, 杨万民, 梁伟, 王妙, 张晓菊, 李佳伟, 王高峰 2012低温物理学报 34 211]

    [21]

    Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484

    [22]

    Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042

    [23]

    Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I 2006 Physica C 445 357

    [24]

    Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [25]

    Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863

    [26]

    Hara S, Zhou D F, Li B Z, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804

    [27]

    Li B Z, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012 Physica C 475 51

    [28]

    Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015 Physica C 510 54

    [29]

    Zhang Y F, Peng L Q, Zhou W L, Zhou X J, Jia L L, Izumi M 2015 IOP Conf. Series: Materials Science and Engineering 87 012077

    [30]

    Zhang Y F, Izumi M, Kimura Y, Xu Y 2009 Physica C: Supercond. Appl. 469 1169

  • [1] Zhao Po, Wang Jianqiang, Chen Meiqing, Yang Jinxue, Su Zhengxiong, Lu Chenyang, Liu Huajun, Hong Zhiyong, Gao Rui. Effect of doping phase on the evolution of He+ ion irradiation defects and superconductivity of EuBa2Cu3O7-δ strips. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240124
    [2] Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong. Superconducting and flux pinning properties of FeSexTe1–x topological superconductors. Acta Physica Sinica, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [3] Cheng Peng, Yang Yu-Mei. Effects of critical current density on mechanical properties of cylindrical superconductors. Acta Physica Sinica, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [4] Dong Xiao-Li, Yuan Jie, Huang Yu-Long, Feng Zhong-Pei, Ni Shun-Li, Tian Jin-Peng, Zhou Fang, Jin Kui, Zhao Zhong-Xian. New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film. Acta Physica Sinica, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [5] Wang San-Sheng, Li Fang, Wu Han, Zhang Zhu-Li, Jiang Wen, Zhao Peng. Low-energy ion beam modified surface property and mechanism of high temperature superconductor YBa2Cu3O7- thin film. Acta Physica Sinica, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [6] Wang Miao, Wu Hua-Chun, Yang Wan-Min, Yang Peng-Tao, Wang Xiao-Mei, Hao Da-Peng, Dang Wen-Jia, Zhang Ming, Hu Cheng-Xi. Influences of BaO doping on the properties of single domain GdBCO bulk superconductors (II). Acta Physica Sinica, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [7] Guo Li-Ping, Yang Wan-Min, Guo Yu-Xia, Chen Li-Ping, Li Qiang. Effect of Ni2O3 doping on the properties of single domain GdBCO bulk superconductors fabricated by a new modified top-seeding infiltration and growth process. Acta Physica Sinica, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [8] Guo Zhi-Chao, Li Ping-Lin. Grain refinement influence on the critical current density of the MgB2 superconductor sample. Acta Physica Sinica, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [9] Chen Yi-Ling, Zhang Chen, He Fa, Wang Da, Wang Yue, Feng Qing-Rong. Thickness dependence of critical current density in MgB2 films fabricated by hybrid physical-chemical vapor deposition. Acta Physica Sinica, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [10] Li Jie, Zhang Huai-Wu, Li Yuan-Xun, Li Qiang, Qin Jun-Feng. Study on the structural and magnetic properties of La-doped barium ferrites. Acta Physica Sinica, 2012, 61(22): 227501. doi: 10.7498/aps.61.227501
    [11] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [12] Chen Rong-Hua, Zhu Ming-Yuan, Li Ying, Li Wen-Xian, Jin Hong-Ming, Dou Shi-Xue. Effect of pulsed magnetic field on critical current in carbon-nanotube-doped MgB2 wires. Acta Physica Sinica, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [13] LIU FENG, HUANG JUN-WEI, LIU WEI, XIAO LING, REN HONG-TAO, JIAO YU-LEI, ZHENG MING-HUI, YAN SHOU-SHENG. EXPERIMENTAL STUDY OF LOCAL FLUX CREEP ON A CYLINDRICAL MELTING-TEXTURED GROWN YBa2Cu3O7-δ SAMPLE AT APPLIED FIELDS. Acta Physica Sinica, 2001, 50(10): 2001-2007. doi: 10.7498/aps.50.2001
    [14] WANG FENG, SUN GUO-QING, KONG XIANG-MU, SHAN LEI, JIN XIN, ZHANG HONG. MAGNETIC RESPONSE OF MELT-TEXTURED YBa2Cu3O7-δ BULK SUPERCONDUCTOR. Acta Physica Sinica, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [15] Han Gu-Chang, Han Han-Min, Wang Zhi-He, Wang Shun-Xi, Liu Xiao-Ning, Liu Zhi-Min, Xi Zheng-Peng, Zhou Lian. . Acta Physica Sinica, 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [16] WEI CHONG-DE, LIU ZUN-XIAO, GAN ZI-ZHAO, REN HONG-TAO, XIAO LING, HE QING. CRITICAL CURRENT DENSITY IN NEUTRON IRRADIATED BULK YBa2Cu3Oy. Acta Physica Sinica, 1992, 41(11): 1884-1890. doi: 10.7498/aps.41.1884
    [17] FAN HONG-CHANG, JIN XIN, LU MU, ZHANG YI-TONG, XU XIAO-NONG, YAO XI-XIAN. MAGNETIZATION MEASUREMENT OF ANISOTROPIC CRITICAL CURRENT DENSITIES IN MELT TEXTURED YBa2Cu3O7-y. Acta Physica Sinica, 1992, 41(2): 317-322. doi: 10.7498/aps.41.317
    [18] FANG MING-HU, XIA JIAN-SHENG, XU ZHU-AN, ZHAO ZHAN-CHUN, SUN DUN-MING, CHEN ZU-YAO, QIAN YI-TAI, ZHANG QI-RUI. STUDIES ON ANISOTROPY FOR SINGLE-CRYSTAL GdBa2Cu3O7-δ. Acta Physica Sinica, 1989, 38(2): 313-316. doi: 10.7498/aps.38.313
    [19] DU YOU-WEI, LU HUAI-XIAN, JIANG YA-JING, WANG TING-XIANG. THE PHASE TRANSITION FORMING BaFe12O19 BY HYDROTHERMAL SYNTHETIC METHOD. Acta Physica Sinica, 1984, 33(4): 579-582. doi: 10.7498/aps.33.579
    [20] LIU JI-ZHE, LU MU, HAN SHI-YING, ZHAI HONG-RU. STUDY OF SUBSTITUTION OF Fe3+ IONS IN BaFe12O19 CRYSTAL BY Co2+-Ti4+ AND Cu2+-Nb5+ IONS. Acta Physica Sinica, 1983, 32(11): 1369-1375. doi: 10.7498/aps.32.1369
Metrics
  • Abstract views:  4712
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2015
  • Accepted Date:  25 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回