Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of bimodal random crystal field on the magnetization and phase transition of Blume-Capel model on nanotube

Li Xiao-Jie Liu Zhong-Qiang Wang Chun-Yang Xu Yu-Liang Kong Xiang-Mu

Citation:

Effects of bimodal random crystal field on the magnetization and phase transition of Blume-Capel model on nanotube

Li Xiao-Jie, Liu Zhong-Qiang, Wang Chun-Yang, Xu Yu-Liang, Kong Xiang-Mu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, the physical properties and applications of the magnetic nanotube have attracted a great deal of theoretical and experimental attention. The magnetization and phase transition of spin-1 Blume-Capel model on a cylindrical Ising nanotube with bimodal random crystal fields are investigated by using the effective field theory. Employing numerical calculations, we obtain the phase diagrams and the magnetization, which depend on the temperature and the parameters of random crystal fields. Our obtained results are as follows. (i) Changing the probability (p) and the ratio of the crystal fields (), the bimodal random crystal fields may describe different doped atoms acting on spins. Especially, for p = 0.5, choosing = 0,-1.0,-0.5 and 0.5, the bimodal random crystal fields can respectively degrade four typical distributions of random crystal fields, i. e., the distribution of diluted crystal fields, the distribution of symmetry staggered crystal fields, the distribution of non-symmetry staggered crystal fields, and the distribution of same-direction crystal field. (ii) The system exhibits different magnetic properties and phase transition behaviors in the diluted, staggered and same-direction crystal field. The diluted and staggered crystal fields may reduce the magnetization of the system, resulting in the ground state saturation value of magnetization, which is less than 1, while the same-direction crystal fields cannot result in a similar behavior. (iii) The system shows several phase transition temperatures, i.e., first-order and second-order phase transitions and reentrant phenomenon as the parameters of bimodal random crystal fields change. The tricritical point and reentrant phenomenon do exist for certain values of the probability, the negative crystal field and the ratio of the crystal fields in the system. The relevant experiment is needed to verify the above-mentioned theoretical results.
      Corresponding author: Kong Xiang-Mu, kongxm@mail.qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 11275112, 11302118), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20123705110004), and the Natural Science Foundations of Shandong Province, China (Grant Nos. ZR2011AM018, ZR2013AQ015).
    [1]

    Blume M 1966 Phys. Rev. 141 517

    [2]

    Capel H W 1966 Physica 32 966

    [3]

    Keskin M, Canko O, Temizer 2005 Phys. Rev. E 72 036125

    [4]

    Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 物理学报 56 1691]

    [5]

    Yan S L, Zhu H X 2006 Chin. Phys. 15 3026

    [6]

    Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil E K 2013 Solid State Commun. 162 53

    [7]

    Albayrak E 2013 Physica A 392 552

    [8]

    Zhou D, Cai L H, Wen F S, Li F S 2007 Chinese J. Chem. Phys. 20 821

    [9]

    Davis D M, Moldovan M, Young D P 2006 Solid State Lett. 9 153

    [10]

    Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145

    [11]

    Cankoa O, Erdinç A, Taşkın F, Atişb M 2011 Phys. Lett. A 375 3547

    [12]

    Canko O, Erdinç A, Taşkın F, Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508

    [13]

    Taşkin F, Canko O, Erdinç A, Yıldırım A F 2014 Physica A 407 287

    [14]

    Albayrak E 2011 Physica A 390 1529

    [15]

    Albayrak E 2013 Solid State Commun. 159 76

    [16]

    Albayrak E 2013 Chin. Phys. B 22 077501

    [17]

    Akıncı , Yksel Y, Polat H 2011 Physica A 390 541

    [18]

    Yigit A, Albayrak E 2013 J. Magn. Magn. Mater. 329 125

    [19]

    Xing L Y, Yan S L 2012 J. Magn. Magn. Mater. 324 3641

    [20]

    Magoussi H, Zaim A, Kerouad M 2013 J. Magn. Magn. Mater. 344 109

    [21]

    H Magoussi, Zaim A, Kerouad M 2013 Chin. Phys. B 22 116401

    [22]

    Kaneyoshi T, Fittipaldi I P, Honmura R, Manabe T 1981 Phys. Rev. B 24 481

    [23]

    Kaneyoshi T, Tucker J W, Jaščur M 1992 Physica A 186 495

    [24]

    Kaneyoshi T 1993 Acta Phys. Pol. A 83 703

    [25]

    Keskin M, Şarli N, Deviren B 2011 Solid State Commun. 151 1025

    [26]

    Kaneyoshi T 1991 J. Phys. Condens. Matter 3 4497

    [27]

    Kaneyoshi T, Mielnicki J 1990 J. Phys. Condens. Matter 2 8773

  • [1]

    Blume M 1966 Phys. Rev. 141 517

    [2]

    Capel H W 1966 Physica 32 966

    [3]

    Keskin M, Canko O, Temizer 2005 Phys. Rev. E 72 036125

    [4]

    Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 物理学报 56 1691]

    [5]

    Yan S L, Zhu H X 2006 Chin. Phys. 15 3026

    [6]

    Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil E K 2013 Solid State Commun. 162 53

    [7]

    Albayrak E 2013 Physica A 392 552

    [8]

    Zhou D, Cai L H, Wen F S, Li F S 2007 Chinese J. Chem. Phys. 20 821

    [9]

    Davis D M, Moldovan M, Young D P 2006 Solid State Lett. 9 153

    [10]

    Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145

    [11]

    Cankoa O, Erdinç A, Taşkın F, Atişb M 2011 Phys. Lett. A 375 3547

    [12]

    Canko O, Erdinç A, Taşkın F, Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508

    [13]

    Taşkin F, Canko O, Erdinç A, Yıldırım A F 2014 Physica A 407 287

    [14]

    Albayrak E 2011 Physica A 390 1529

    [15]

    Albayrak E 2013 Solid State Commun. 159 76

    [16]

    Albayrak E 2013 Chin. Phys. B 22 077501

    [17]

    Akıncı , Yksel Y, Polat H 2011 Physica A 390 541

    [18]

    Yigit A, Albayrak E 2013 J. Magn. Magn. Mater. 329 125

    [19]

    Xing L Y, Yan S L 2012 J. Magn. Magn. Mater. 324 3641

    [20]

    Magoussi H, Zaim A, Kerouad M 2013 J. Magn. Magn. Mater. 344 109

    [21]

    H Magoussi, Zaim A, Kerouad M 2013 Chin. Phys. B 22 116401

    [22]

    Kaneyoshi T, Fittipaldi I P, Honmura R, Manabe T 1981 Phys. Rev. B 24 481

    [23]

    Kaneyoshi T, Tucker J W, Jaščur M 1992 Physica A 186 495

    [24]

    Kaneyoshi T 1993 Acta Phys. Pol. A 83 703

    [25]

    Keskin M, Şarli N, Deviren B 2011 Solid State Commun. 151 1025

    [26]

    Kaneyoshi T 1991 J. Phys. Condens. Matter 3 4497

    [27]

    Kaneyoshi T, Mielnicki J 1990 J. Phys. Condens. Matter 2 8773

  • [1] Han Di-Yi, Gu Yang, Hu Tao-Zheng, Dong Wen, Ni Ya-Xian. Enhanced photocurrent in bimetallic/TiO2 nanotube composite structures. Acta Physica Sinica, 2021, 70(3): 038103. doi: 10.7498/aps.70.20201134
    [2] Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju, Wei De-Quan. Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder. Acta Physica Sinica, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [3] Wu Xiao-Fang, Xie Shu-Guo, He Yun-Tao, Li Li, Li Xiao-Lu. Effective wavelength and resonance characteristics of carbon nanotube optical antenna. Acta Physica Sinica, 2016, 65(9): 097801. doi: 10.7498/aps.65.097801
    [4] Ma Yu-Long, Xiang Wei, Jin Da-Zhi, Chen Lei, Yao Ze-En, Wang Qi-Long. Field evaporation behaviour for carbon nanotube thin-film. Acta Physica Sinica, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [5] Xu Yan, Fan Wei, Ji Yan-Jun, Song Ren-Gang, Chen Bing, Zhao Zhen-Hua, Chen Da. Effective field theory approach to the weakly interacting bose gas. Acta Physica Sinica, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [6] Li Yin-Fang, Shen Yin-Yang, Kong Xiang-Mu. Effects of random external fields on the dynamics of the one-dimensional Blume-Capel model. Acta Physica Sinica, 2012, 61(10): 107501. doi: 10.7498/aps.61.107501
    [7] Liu Gui-Li, Yang Zhong-Hua, Fang Ge-Liang. Electronic theory study of interface characteristic of magnesium/carbon nanotube with nickel. Acta Physica Sinica, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [8] Bai Xin, Wang Ming-Sheng, Liu Yang, Zhang Geng-Min, Zhang Zhao-Xiang, Zhao Xing-Yu, Guo Deng-Zhu, Xue Zeng-Quan. Field evaporation of the end of a carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [9] Guo Da-Bo, Yuan Guang, Song Cui-Hua, Gu Chang-Zhi, Wang Qiang. Field emission of carbon nanotubes. Acta Physica Sinica, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [10] Liu Gui-Li, Guo Yu-Fu, Li Rong-De. Electronic theory of interface characteristics of ZA27/CNT. Acta Physica Sinica, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [11] Zhang Guo-Ying, Zhang Hui, Wei Dan, He Jun-Qi. Electronic theory studies of aluminum matrix composite reinforced by carbon nanotube. Acta Physica Sinica, 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [12] Zhou Yun, Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang. Resistivity of polyaniline nanotubes doped with naphthalene sulfonic acid: dependence on moisture and ethanol. Acta Physica Sinica, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [13] Lu Di, Yan Xiao-Hong, Ding Jian-Wen. Electron effective mass of single-wall carbon nanotubes. Acta Physica Sinica, 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [14] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [15] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [16] Wang Yu, Wang Xiu-Xi, Ni Xiang-Gui, Wu Heng-An. Buckling behavior of carbon nanotube under compression. Acta Physica Sinica, 2003, 52(12): 3120-3124. doi: 10.7498/aps.52.3120
    [17] . Acta Physica Sinica, 2002, 51(2): 434-438. doi: 10.7498/aps.51.434
    [18] Long Yun-Zhen, Zheng Ping, Zhang Zhi-Ming, Wei Zhi-Xiang, Wan Mei-Xiang, Chen Zhao-Jia, Wang Nan-Lin. . Acta Physica Sinica, 2002, 51(9): 2090-2095. doi: 10.7498/aps.51.2090
    [19] Zhang Guo-Min, Yang Chuan-Zhang. . Acta Physica Sinica, 1995, 44(6): 958-962. doi: 10.7498/aps.44.958
    [20] ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY ON THE PHASE DIAGRAM OF THE FERROMAGNETIC BOND-DILUTE BLUME-CAPEL MODEL. Acta Physica Sinica, 1993, 42(1): 128-133. doi: 10.7498/aps.42.128
Metrics
  • Abstract views:  4467
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  21 May 2015
  • Accepted Date:  08 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回