Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controlling of magnetic vortex chirality and polarity by spin-polarized current

Sun Ming-Juan Liu Yao-Wen

Citation:

Controlling of magnetic vortex chirality and polarity by spin-polarized current

Sun Ming-Juan, Liu Yao-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For a nanodisk, magnetic vortex characterized by a curling magnetization is an energetically stable state. The magnetization in the center of the magnetic vortex is directed upward or downward, namely, the vortex core polarity p=+1 or p=-1 refers to up or down, respectively. The curling direction of magnetization, namely, the vortex chirality, is either counter-clockwise or clockwise. Thus, different combinations of chirality and polarity in a vortex structure demonstrate four stable magnetic states, which can be used to design a multibit memory cell. Such a multibit memory application requires the independent controlling of both the vortex chirality and vortex polarity, which has received considerable attention recently. Switching the vortex polarity has been achieved by using either a magnetic field or a current. The vortex chirality can be controlled by introducing asymmetric geometry of nanodisks. In this article, by using micromagnetic simulations, we present an effective method to simultaneously control the vortex chirality and polarity in a spin valve structure, in which the fixed spin polarizer layer is magnetized in the film plane when the free layer has a magnetic vortex configuration. The free layer is designed into a ladder shape with the right part being thicker than the left part. Our simulations indicate that a combination of desirable vortex chirality and polarity can be easily controlled by a Gaussian current pulse with proper strength and pulse duration through the spin-transfer torque effect. The insight into physical mechanism of the controllable vortex is demonstrated by a series of snapshots. If the magnetic moment of the free layer is saturated in the direction of 0θ θ is the angle between the magnetization and+x axis, the vortex with the counter-clockwise chirality will be generated after the pulse. In contrast, if the free layer magnetization is saturated along the direction πθ <2π, after the pulse, the vortex will have the clockwise chirality. The core polarity of the remanent vortex state is determined by the sign of the magnetic charges which are formed in the step-side of nanodisk during the current pulse.
      Corresponding author: Liu Yao-Wen, yaowen@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274241).
    [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [3]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [4]

    Wei H Y, Lu Q F, Zhao S F, Zhang X Q, Feng J F, Han X F 2004 Chin. Phys. 13 1553

    [5]

    Wei H X, Hickey M C, Anderson G I R, Han X F, Marrows C H 2008 Phys. Rev. B 77 132401

    [6]

    Kim S, Lee K, Yu Y, Choi Y 2008 Appl. Phys. Lett. 92 022509

    [7]

    Zhang S L, liu Y, Collins-Mclntyre L J, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087

    [8]

    Zhang S L, Zhang J Y, Alexander A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109

    [9]

    Zhang S L, Alexander A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Elec. Mat. 1 1400054

    [10]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [11]

    Van Waeyenberge B, Puzic A, Stoll H, et al. 2006 Nature 444 461

    [12]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mat. 6 270

    [13]

    Pigeau B, De Loubens G, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W 2011 Nat. Phys. 7 26

    [14]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [15]

    Hertel R, Gliga S, Fähnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [16]

    Liu Y, Gliga S, Hertel R, Schneider C M 2007 Appl. Phys. Lett. 91 112501

    [17]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [18]

    Liu Y, He H, Zhang Z 2007 Appl. Phys. Lett. 91 242501

    [19]

    Yakata S, Miyata M, Honda S, Itoh H, Wada H, Kimura T 2011 Appl. Phys. Lett. 99 242507

    [20]

    Uhlir V, Urbanek M, Hladik L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Sikola T 2013 Nat. Nano 8 341

    [21]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503

    [22]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [23]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

  • [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [3]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [4]

    Wei H Y, Lu Q F, Zhao S F, Zhang X Q, Feng J F, Han X F 2004 Chin. Phys. 13 1553

    [5]

    Wei H X, Hickey M C, Anderson G I R, Han X F, Marrows C H 2008 Phys. Rev. B 77 132401

    [6]

    Kim S, Lee K, Yu Y, Choi Y 2008 Appl. Phys. Lett. 92 022509

    [7]

    Zhang S L, liu Y, Collins-Mclntyre L J, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087

    [8]

    Zhang S L, Zhang J Y, Alexander A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109

    [9]

    Zhang S L, Alexander A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Elec. Mat. 1 1400054

    [10]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [11]

    Van Waeyenberge B, Puzic A, Stoll H, et al. 2006 Nature 444 461

    [12]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mat. 6 270

    [13]

    Pigeau B, De Loubens G, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W 2011 Nat. Phys. 7 26

    [14]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [15]

    Hertel R, Gliga S, Fähnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [16]

    Liu Y, Gliga S, Hertel R, Schneider C M 2007 Appl. Phys. Lett. 91 112501

    [17]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [18]

    Liu Y, He H, Zhang Z 2007 Appl. Phys. Lett. 91 242501

    [19]

    Yakata S, Miyata M, Honda S, Itoh H, Wada H, Kimura T 2011 Appl. Phys. Lett. 99 242507

    [20]

    Uhlir V, Urbanek M, Hladik L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Sikola T 2013 Nat. Nano 8 341

    [21]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503

    [22]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [23]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

  • [1] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [2] Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong. Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler. Acta Physica Sinica, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [3] Li Dong, Dong Sheng-Zhi, Li Lei, Xu Ji-Yuan, Chen Hong-Sheng, Li Wei. Micromagnetic simulations of reversal magnetization in core ((Nd0.7, Ce0.3)2Fe14B)-shell (Nd2Fe14B) type. Acta Physica Sinica, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [5] Dong Dan-Na, Cai Li, Li Cheng, Liu Bao-Jun, Li Chuang, Liu Jia-Hao. Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction. Acta Physica Sinica, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [6] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [7] Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei. Local energy of magnetic vortex core reversal. Acta Physica Sinica, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [8] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] Peng Yi, Zhao Guo-Ping, Wu Shao-Quan, Si Wen-Jing, Wan Xiu-Lin. Micromagnetic simulation and analysis of Nd2Fe14B/Fe65Co35 magnetic bilayered thin films with different orientations of the easy axis. Acta Physica Sinica, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [10] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [11] Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun. Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires. Acta Physica Sinica, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [12] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [13] Yin Jin-Hua, C. H. Hee, Pan Li-Qing. First order reversal curves of laminated antiferromagnetically coupled media. Acta Physica Sinica, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [14] Yang Xiu-Hui. Micromagnetic simulations of the initial spontaneous magnetic states of nanoscale Fe islands on W(110) substrates. Acta Physica Sinica, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [15] Yang Shu-Ke, Bao Jin, Su Xi-Ping, Xu Xiao-Guang, Jiang Yong. Study of synthetic antiferromagnetic Ni81Fe19/Co90Fe10/Ru/Co90Fe10/Ni81Fe19. Acta Physica Sinica, 2008, 57(4): 2504-2508. doi: 10.7498/aps.57.2504
    [16] Su Xi-Ping, Bao Jin, Yan Shu-Ke, Xu Xiao-Guang, Jiang Yong. Effect of dual-synthetic antiferromagnet structre on giant magnetoresistance in spin valves. Acta Physica Sinica, 2008, 57(4): 2509-2513. doi: 10.7498/aps.57.2509
    [17] Jiang Hong-Wei, Wang Ai-Ling, Zheng Wu. Anisotropic magnetoresistance effect in spin valve multilayers. Acta Physica Sinica, 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [18] Cai Chun-Lin, Teng Jiao, Yu Guang-Hua, Zhu Feng-Wu, Lai Wu-Yan, Xian Ji-Mei. . Acta Physica Sinica, 2002, 51(8): 1846-1850. doi: 10.7498/aps.51.1846
    [19] Jiang Hong-Wei, Li Ming-Hua, Yu Guang-Hua, Zhu Feng-Wu, Zheng Wu. . Acta Physica Sinica, 2002, 51(6): 1366-1370. doi: 10.7498/aps.51.1366
    [20] Shen Feng, Xu Qing-Yu, Lu Zheng-Qi, Cai Jian-Wang, Lai Wu-Yan, Zhang Ze. . Acta Physica Sinica, 2002, 51(8): 1851-1855. doi: 10.7498/aps.51.1851
Metrics
  • Abstract views:  5856
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2015
  • Accepted Date:  10 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回