Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery

Ma Hao Liu Lei Lu Xue-Sen Liu Su-Ping Shi Jian-Ying

Citation:

Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery

Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The electronic structure and properties of silicate polyanion Li2FeSiO4 in the orthorhombic crystal structure with Pmn21 symmetry and the relevant delithiated system LiFeSiO4 are investigated by the first principles method in the framework of the density functional theory with the generalized gradient approximation. The WIEN2k software is used for the self-consistent calculation of the crystal structure to obtain the energy band, density of states, and charge density. Boltzmann transport theory is further used to obtain the values of ratio σ /τ of Li2FeSiO4 and LiFeSiO4 based on the results of the first-principles calculations. The structural stability of Li2FeSiO4 system is demonstrated by calculating and analyzing the lattice parameter and the bond length. The results indicate that Li2FeSiO4 crystal has only 2.7% volume variation in the lithiation/delithiation process and the change of the Si–O bond length is very small, which suggests that the bonding nature between silicon and oxygen atoms remains unchanged. The results of charge density analysis show that the structural stability of Li2FeSiO4 crystal during lithium deintercalation is actually a consequence of a strong covalent interaction between silicon and oxygen atoms. An analysis of density of states shows that the density in the high-energy range near the Fermi level mainly comes from Fe-3d electron states. The Fermi level moves towards the lower energy end during the deintercalation of lithium ions and the electronic conductivity decreases with the decreasing of lithium ions, indicating that the conductive properties of Li2FeSiO4 are better than those of LiFeSiO4. It suggests that Li2FeSiO4 could be modified by doping atoms to affect the electrons in orbital Fe-3d and enhance conductive properties in future research. The calculations of transport properties show that the electronic conductivity of Li2FeSiO4 is not sensitive to temperature in a range from 300 to 800 K, and Li2FeSiO4 material is a potential candidate for heat-resisting cathode material. It also indicates that Li2FeSiO4 owns a better electronic conductivity than LiFeSiO4, which is consistent with the analyses of band structure and density of states. This research reveals the microscopic mechanism such as electronic structure and electronic transport properties of Li2FeSiO4 crystal in theoretical calculations, and provides a theoretical basis for the further improvement of electrochemical properties of lithium-ion battery.
      Corresponding author: Liu Lei, thesisliu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204079), the Natural Science Foundation of Hebei Province, China (Grant No. F2013201196), and the Youth Outstanding Talent Project of Hebei Province, China (2013).
    [1]

    Idota Y, Kuboat T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395

    [2]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810

    [3]

    Huang X J 2015 Physics 44 1 (in Chinese) [黄学杰 2015 物理 44 1]

    [4]

    Zhang S, Li W J, Ling S G, Li H, Zhou Z B, Chen L Q 2015 Chin. Phys. B 24 078201

    [5]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [6]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [7]

    Meng Y S, Arroyo-de Dompablo M E 2013 Acc. Chem. Res. 46 1171

    [8]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [9]

    Wang Z X, Chen L Q, Huang X J 2011 Prog. Chem. 23 284 (in Chinese) [王兆翔, 陈立泉, 黄学杰 2011 化学进展 23 284]

    [10]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 物理学报 60 036301]

    [11]

    Dou J Q, Kang X Y, Turtdi W, Hua N, Han Y 2012 Acta Phys. Sin. 61 087101 (in Chinese) [窦俊青, 康雪雅, 吐尔迪 · 吾买尔, 华宁, 韩英 2012 物理学报 61 087101]

    [12]

    Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q, Huang X J 2003 Phys. Rev. B 68 195108

    [13]

    Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q, Chen L Q 2011 Appl. Phys. A 104 529

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303

    [15]

    Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S, Chen L Q 2009 Phys. Lett. A 373 4096

    [16]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [17]

    Araujo R B, Scheicher R H, Almeida J S D, Silva A F D, Ahuja R 2013 Solid State Ionics 173 9

    [18]

    Liivat A, Thomas J O 2011 Solid State Ionics 192 58

    [19]

    Armstrong A R, Kuganathan N, Islam M S, Bruce P G 2011 J. Am. Chem. Soc. 133 13031

    [20]

    Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas J O 2006 J. Mater. Chem. 16 2266

    [21]

    Jugović D, Uskoković D 2009 J. Power Source 190 538

    [22]

    Islam M S, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong A R, Bruce P G 2011 J. Mater. Chem. 21 9811

    [23]

    Lv D P, Bai J Y, Zhang P, Wu S Q, Li Y X, Wen W, Jiang Z, Mi J X, Zhu Z Z, Yang Y 2013 Chem. Mater. 25 2014

    [24]

    Larsson P, Ahuja R, Nytén A, Thomas J O 2006 Electrochem. Commun. 8 797

    [25]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [26]

    Nishimura S, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [27]

    Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399

    [28]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67

  • [1]

    Idota Y, Kuboat T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395

    [2]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810

    [3]

    Huang X J 2015 Physics 44 1 (in Chinese) [黄学杰 2015 物理 44 1]

    [4]

    Zhang S, Li W J, Ling S G, Li H, Zhou Z B, Chen L Q 2015 Chin. Phys. B 24 078201

    [5]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [6]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [7]

    Meng Y S, Arroyo-de Dompablo M E 2013 Acc. Chem. Res. 46 1171

    [8]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [9]

    Wang Z X, Chen L Q, Huang X J 2011 Prog. Chem. 23 284 (in Chinese) [王兆翔, 陈立泉, 黄学杰 2011 化学进展 23 284]

    [10]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 物理学报 60 036301]

    [11]

    Dou J Q, Kang X Y, Turtdi W, Hua N, Han Y 2012 Acta Phys. Sin. 61 087101 (in Chinese) [窦俊青, 康雪雅, 吐尔迪 · 吾买尔, 华宁, 韩英 2012 物理学报 61 087101]

    [12]

    Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q, Huang X J 2003 Phys. Rev. B 68 195108

    [13]

    Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q, Chen L Q 2011 Appl. Phys. A 104 529

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303

    [15]

    Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S, Chen L Q 2009 Phys. Lett. A 373 4096

    [16]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [17]

    Araujo R B, Scheicher R H, Almeida J S D, Silva A F D, Ahuja R 2013 Solid State Ionics 173 9

    [18]

    Liivat A, Thomas J O 2011 Solid State Ionics 192 58

    [19]

    Armstrong A R, Kuganathan N, Islam M S, Bruce P G 2011 J. Am. Chem. Soc. 133 13031

    [20]

    Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas J O 2006 J. Mater. Chem. 16 2266

    [21]

    Jugović D, Uskoković D 2009 J. Power Source 190 538

    [22]

    Islam M S, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong A R, Bruce P G 2011 J. Mater. Chem. 21 9811

    [23]

    Lv D P, Bai J Y, Zhang P, Wu S Q, Li Y X, Wen W, Jiang Z, Mi J X, Zhu Z Z, Yang Y 2013 Chem. Mater. 25 2014

    [24]

    Larsson P, Ahuja R, Nytén A, Thomas J O 2006 Electrochem. Commun. 8 797

    [25]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [26]

    Nishimura S, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [27]

    Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399

    [28]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67

  • [1] Ran Pei-Lin, Wu Kang, Zhao En-Yue, Wang Fang-Wei, Wu Zhi-Min. Enhancing reversible capacity and cycling stability of Li1.2Ni0.13Fe0.13Mn0.54O2 by inducing low Li/Ni misalignment through Mo doping. Acta Physica Sinica, 2024, 73(2): 028201. doi: 10.7498/aps.73.20231361
    [2] Xu Wei-Liang, Dang Rong-Bin, Yang Yang, Guo Qiu-Bo, Ding Fei-Xiang, Han Shuai, Tang Xiao-Han, Liu Yuan, Zuo Zhan-Chun, Wang Xiao-Qi, Yang Rui, Jin Xu, Rong Xiao-Hui, Hong Juan, Xu Ning, Hu Yong-Sheng. Magnesium doping improved characteristics of high voltage cycle of layered cathode of sodium ion battery. Acta Physica Sinica, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [3] Ding Fei-Xiang, Rong Xiao-Hui, Wang Hai-Bo, Yang Yang, Hu Zi-Lin, Dang Rong-Bin, Lu Ya-Xiang, Hu Yong-Sheng. Phase transitions of Na-ion layered oxide materials and their influence on properties. Acta Physica Sinica, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [4] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [5] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [6] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [7] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] Lu Ya-Xiang, Zhao Cheng-Long, Rong Xiao-Hui, Chen Li-Quan, Hu Yong-Sheng. Research progress of materials and devices for room-temperature Na-ion batteries. Acta Physica Sinica, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [9] Peng Ying-Zha, Zhang Kai, Zheng Bai-Lin, Li Yong. Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Physica Sinica, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] Li Juan, Ru Qiang, Hu She-Jun, Guo Ling-Yun. Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery. Acta Physica Sinica, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [11] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [12] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [13] Dou Jun-Qing, Kang Xue-Ya, Tuerdi Wumair, Hua Ning, Han Ying. The first principles and experimental study on Mn-doped LiFePO4. Acta Physica Sinica, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] Liu Xiang, Xie Kai, Zheng Chun-Man, Wang Jun. Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres. Acta Physica Sinica, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [15] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [16] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [18] Li Jia, Yang Chuan-Zheng, Zhang Xi-Gui, Zhang Jian, Xia Bao-Jia. XRD studies on the electrode materials in the charge-discharge process of a graphite/Li(Ni1/3Co1/3Mn1/3)O2 battery. Acta Physica Sinica, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [19] Hou Xian-Hua, Hu She-Jun, Li Wei-Shan, Zhao Ling-Zhi, Yu Hong-Wen, Tan Chun-Lin. Investigation of lithiation/delithiation mechanism in lithium-tin alloys for anode materials. Acta Physica Sinica, 2008, 57(4): 2374-2379. doi: 10.7498/aps.57.2374
    [20] Hou Zhu-Feng, Liu Hui-Ying, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. Investigation of lithium insertion in anode material CuSn for lithium-ion batteries. Acta Physica Sinica, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
Metrics
  • Abstract views:  6365
  • PDF Downloads:  336
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2015
  • Accepted Date:  01 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回