Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis, structure and spectroscopic properties of Nd3+:SrY2O4 phosphor

Peng Fang Zhang Qing-Li y Wang Xiao-Fei Zhang Hui-Li Ding Shou-Jun Liu Wen-Peng Luo Jian-Qiao Sun Dun-Lu Sun Gui-Hua

Citation:

Synthesis, structure and spectroscopic properties of Nd3+:SrY2O4 phosphor

Peng Fang, Zhang Qing-Li, y Wang Xiao-Fei, Zhang Hui-Li, Ding Shou-Jun, Liu Wen-Peng, Luo Jian-Qiao, Sun Dun-Lu, Sun Gui-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to obtain new-type laser crystals, SrY2O4 is chosen as a host material. Because Y3+ ions in SrY2O4 occupy two non-equivalent sites, it might be possible to realize dual-wave laser and broadband emission at 1.06 m by partially replacing Y3+ with Nd3+. In this work, (3 at.%) Nd3+ doped SrY2O4 phosphor is synthesized by the conventional solid state reaction. The structure and luminescence properties in the visible and near-infrared ranges are studied. The peaks in the X-ray powder diffraction pattern of (3 at.%) Nd3+:SrY2O4 can be well indexed according to ICSD#25701. The lattice parameters, atomic coordinates, atomic temperature factors etc., are obtained by the Rietveld refinement with R_p of 4.68% and R_wp of 5.91%. According to the excitation spectra in a range of 220-380 nm, it can be seen that Nd3+:SrY2O4 is efficiently excited by 353 nm which is assigned to the 4I9/24D3/2+4D5/2+2I11/2+4D1/2 transition of Nd3+ ions. Under the 353 nm light excitation, Nd3+:SrY2O4 exhibits the strongest emission at 419 nm corresponding to the 2D15/24I9/2 transition of Nd3+ ions. What is more, Nd3+:SrY2O4 can be excited effectively by 824 nm light, which matches well with the commercial 830 nm diode laser. When excited with 824 nm, the strongest fluorescence peak is located at 1083 nm with a wide bandwidth of about 90 nm. Compared with that at 8~K, the bandwidth in the fluorescence spectrum at 300 K is broadened because of the homogeneous broadening induced by the increase of temperature. Additionally, the peaks corresponding to the 4F3/24I11/2 transition are split into two groups at 8~K, which results from the two non-equivalent sites of Nd3+ ions. Compared with Nd3+:YAG, Nd3+:SrY2O4 has more potential applications in the tunable and ultrashort lasers. The fluorescence lifetime of the 4F3/24I11/2 transition of (3 at.%) Nd3+:SrY2O4 is 281.7 s, which shows slight concentration quenching compared with that of (0.5 at.%) Nd3+:SrY2O4. The fluorescence lifetime of (3 at.%) Nd3+:SrY2O4 is much longer than that of (0.6 at.%) Nd3+:YAG which is beneficial to the energy storage. In conclusion, the wide emission band and the long decay time of 1.08 m indicate that Nd3+:SrY2O4 is a very promising new-wavelength and ultrashort laser material pumped by laser diode.
      Corresponding author: Zhang Qing-Li, zql@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51272254, 51102239, 61205173, 61405206).
    [1]

    Qiao Y B, Da N, Chen D P, Qiu J R 2007 Acta Phys. Sin. 56 7023 (in Chinese) [乔延波, 达宁, 陈丹平, 邱建荣 2007 物理学报 56 7023]

    [2]

    Golla D, Knoke S, Sche W, Ernst G, Bode M, Tnermann A, Welling H 1995 Opt. Lett. 20 1148

    [3]

    Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755

    [4]

    Li C M, Zong N, Gao H W, Xu Z Y, Liu W B, Pan Y B, Feng X Q 2010 Chin. Phys. B 19 064202

    [5]

    Fields R A, Birnbaum M, Fincher C L 1987 Appl. Phys. Lett. 51 1885

    [6]

    Zheng Y H, Zhou H J, Wang Y J, Wu Z Q 2013 Chin. Phys. B 22 084207

    [7]

    Liu J, Shao Z, Zhang H, Meng X, Zhu L, Jiang M 1999 Appl. Phys. B 69 241

    [8]

    Decker B F, Kasper J S 1957 Acta Crystallogr. 10 332

    [9]

    Xu W L, Jia W Y, Revira I, Monge K, Liu H M 2001 J. Electrochem. Soc. 148 H176

    [10]

    Zhang Y, Geng D L, Shang M M, Zhang X, Li X J, Cheng Z Y, Lian H Z, Lin J 2013 Dalton T. 42 4799

    [11]

    Fukuda K, Matsubara H 2005 J. Am. Ceram. Soc. 88 3205

    [12]

    van Pieterson L, Reid M F, Wegh R T, Soverna S, Meijerink A 2002 Phys. Rev. B 65 045113

    [13]

    Koechner W 2006 Solid-State Laser Engneering (New York: Springer) p54

  • [1]

    Qiao Y B, Da N, Chen D P, Qiu J R 2007 Acta Phys. Sin. 56 7023 (in Chinese) [乔延波, 达宁, 陈丹平, 邱建荣 2007 物理学报 56 7023]

    [2]

    Golla D, Knoke S, Sche W, Ernst G, Bode M, Tnermann A, Welling H 1995 Opt. Lett. 20 1148

    [3]

    Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755

    [4]

    Li C M, Zong N, Gao H W, Xu Z Y, Liu W B, Pan Y B, Feng X Q 2010 Chin. Phys. B 19 064202

    [5]

    Fields R A, Birnbaum M, Fincher C L 1987 Appl. Phys. Lett. 51 1885

    [6]

    Zheng Y H, Zhou H J, Wang Y J, Wu Z Q 2013 Chin. Phys. B 22 084207

    [7]

    Liu J, Shao Z, Zhang H, Meng X, Zhu L, Jiang M 1999 Appl. Phys. B 69 241

    [8]

    Decker B F, Kasper J S 1957 Acta Crystallogr. 10 332

    [9]

    Xu W L, Jia W Y, Revira I, Monge K, Liu H M 2001 J. Electrochem. Soc. 148 H176

    [10]

    Zhang Y, Geng D L, Shang M M, Zhang X, Li X J, Cheng Z Y, Lian H Z, Lin J 2013 Dalton T. 42 4799

    [11]

    Fukuda K, Matsubara H 2005 J. Am. Ceram. Soc. 88 3205

    [12]

    van Pieterson L, Reid M F, Wegh R T, Soverna S, Meijerink A 2002 Phys. Rev. B 65 045113

    [13]

    Koechner W 2006 Solid-State Laser Engneering (New York: Springer) p54

Metrics
  • Abstract views:  5202
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2015
  • Accepted Date:  27 August 2015
  • Published Online:  05 January 2016

/

返回文章
返回