Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Remote state preparation via photonic Faraday rotation in low-Q cavities

Yang Zhi-Gang Wu Ting-Ting Liu Jin-Ming

Citation:

Remote state preparation via photonic Faraday rotation in low-Q cavities

Yang Zhi-Gang, Wu Ting-Ting, Liu Jin-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the input-output relation in low-Q cavities, we propose a feasible scheme to prepare remotely a single-atom state via photonic Faraday rotation, and then the scheme is generalized to the case of remote preparation of a two-atom entangled state. Our results show that when the coefficients of the initial atomic state to be prepared are real, both remote preparation of the single-atom state and that of the two-atom entangled state can be achieved deterministically by selecting appropriate parameters of the systems for the interactions among the atom, polarized single-photon pulse, and cavity field. Compared with the existing schemes for remote preparation of atomic states, in our scheme photons are used as flying qubits to transmit quantum information, which is suitable indeed to achieve a long-distance atomic state preparation in principle. Due to the fact that the information of atomic state is encoded in two degenerate ground-state levels of a -type three-level atom confined in a unilateral dissipative cavity, and that the atoms are only virtually excited, our schemes are insensitive to both cavity decay and atomic spontaneous emission. Besides, the two schemes we proposed do not need two- or multi-particle orthogonal measurements, only product-state measurements are involved, as well as they work in low-Q regime and do not require a strong coupling condition between the atoms and the optical cavities, which greatly reduce the experimental difficulty.
      Corresponding author: Liu Jin-Ming, jmliu@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11134003) and the National Basic Research Program of China (Grant Nos. 2011CB921602, 2012CB821302).
    [1]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Lo H K 2000 Phys. Rev.A 62 012313

    [3]

    Pati A K 2000 Phys. Rev. A 63 014302

    [4]

    Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M, Wootters W K 2001 Phys. Rev. Lett. 87 077902

    [5]

    Zeng B, Zhang P 2002 Phys. Rev. A 65 022316

    [6]

    Berry D W, Sanders B C 2003 Phys. Rev. Lett. 90 057901

    [7]

    Ye M Y, Zhang Y S, Guo G C 2004 Phys. Rev.A 69 022310

    [8]

    Kurucz Z, Adam P, Kis Z, Janszky J 2005 Phys. Rev. A 72 052315

    [9]

    Yu C S, Song H S, Wang Y H 2006 Phys. Rev. A 73 022340

    [10]

    Xia Y, Song J, Song H S 2007 Opt. Commun. 277 219

    [11]

    Yan F L, Zhang G H 2008 Int. J. Quantum Inf. 6 485

    [12]

    Liu J M, Feng X L, Oh C H 2009 EPL 87 30006

    [13]

    Dai H Y, Zhang M, Chen J M, Li C Z 2011 Chin. Phys. B 20 050310

    [14]

    Solis-Prosser M A, Neves L 2011 Phys. Rev.A 84 012330

    [15]

    An N B, Bich C T, Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506

    [16]

    Chen Z F, Liu J M, Ma L 2014 Chin. Phys.B 23 020312

    [17]

    Ma S Y, Luo M X, Chen X B, Yang Y X 2014 Quantum Inf. Process 13 1951

    [18]

    Hua C Y, Chen Y X 2015 Quantum Inf. Process 14 1069

    [19]

    Peng X H, Zhu X W, Fang X M, Feng M, Liu M L, Gao K L 2003 Phys. Lett.A 306 271

    [20]

    Babichev S A, Brezger B, Lvovsky A I 2004 Phys. Rev. Lett. 92 047903

    [21]

    Rosenfeld W, Berner S, Volz J, Weber M, Weinfurter H 2007 Phys. Rev. Lett. 98 050504

    [22]

    Barreiro J T, Wei T C, Kwiat P G 2010 Phys. Rev. Lett. 105 030407

    [23]

    Wu W, Liu W T, Chen P X, Li C Z 2010 Phys. Rev.A 81 042301

    [24]

    Radmark M, Wiesniak M, Zukowski M, Bourennane M 2013 Phys. Rev. A 88 032304

    [25]

    Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S 1994 Phys. Rev. A 50 895

    [26]

    Moussa M H Y 1996 Phys. Rev. A 54 4661

    [27]

    Zheng S B 2004 Phys. Rev. A 69 064302

    [28]

    Ye L, Guo G C 2004 Phys. Rev. A 70 054303

    [29]

    Cardoso W B, Avelar A T, Baseia B, de Almeida N G 2005 Phys. Rev.A 72 045802

    [30]

    Liu J M, Weng B, Xia Y 2006 J. Opt. Soc. Am. B 23 1499

    [31]

    Bose S, Knight P L, Plenio M B, Vedral V 1999 Phys. Rev. Lett. 83 5158

    [32]

    Zheng S B, Guo G C 2006 Phys. Rev.A 73 032329

    [33]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400

    [34]

    Li Y Q, Steuerman D W, Berezovsky J, Seferos D S, Bazan G C, Awschalom D D 2006 Appl. Phys. Lett. 88 193126

    [35]

    Atatre M, Dreiser J, Badolato A, Imamoglu A 2007 Nat. Phys. 3 101

    [36]

    Chen J J, An J H 2010 Int. J. Quantum Inf. 8 787

    [37]

    Chen J J, An J H, Feng M, Liu G 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095505

    [38]

    Bastos W P, Cardoso W B, Avelar A T, de Almeida N G, Baseia B 2012 Quantum Inf. Process 11 1867

    [39]

    An J H, Feng M, Oh C H 2009 Phys. Rev.A 79 032303

    [40]

    Chen Q, Feng M 2010 Phys. Rev. A 82 052329

    [41]

    Bastos W P, Cardoso W B, Avelar A T, Baseia B 2011 Quantum Inf. Process 10 395

    [42]

    Wang B, Chen Q, Yang W L, Kou S P 2012 Commun. Theor. Phys. 58 225

    [43]

    Pan G Z, Zhang G, Yuan H 2013 Int. J. Theor. Phys. 52 912

    [44]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [45]

    Luo M X, Li H R, Wang X J 2014 Eur. Phys. J. D 68 190

    [46]

    Chen X D, Xiao S J, Gu Y J, Lin X M 2010 Acta Phys. Sin. 59 5251 (in Chinese) [陈晓东, 肖邵军, 顾永建, 林秀敏 2010 物理学报 59 5251]

    [47]

    Cheng L Y, Wang H F, Zhang S, Yeon K W 2013 Chin. Phys. B 22 050306

    [48]

    Sun Q, He J, Ye L 2014 Chin. Phys. B 23 060305

    [49]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p121-135

    [50]

    Duan L M, Kimble H J 2004 Phys. Rev. Lett. 92 127902

    [51]

    Cao C, Wang C, He L Y, Zhang R 2013 Opt. Exp. 21 4093

    [52]

    Sheng Y B, Zhao S Y, Liu J, Zhou L 2014 Quantum Inf. Process 13 881

    [53]

    Zhang Y Q, Jin X R, Zhang S 2005 Chin. Phys. 14 1732

    [54]

    Xu X B, Liu J M 2006 Can. J. Phys. 84 1089

    [55]

    Xia Y, Song J, Song H S 2008 Inter. J. Theor. Phys. 47 3226

  • [1]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Lo H K 2000 Phys. Rev.A 62 012313

    [3]

    Pati A K 2000 Phys. Rev. A 63 014302

    [4]

    Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M, Wootters W K 2001 Phys. Rev. Lett. 87 077902

    [5]

    Zeng B, Zhang P 2002 Phys. Rev. A 65 022316

    [6]

    Berry D W, Sanders B C 2003 Phys. Rev. Lett. 90 057901

    [7]

    Ye M Y, Zhang Y S, Guo G C 2004 Phys. Rev.A 69 022310

    [8]

    Kurucz Z, Adam P, Kis Z, Janszky J 2005 Phys. Rev. A 72 052315

    [9]

    Yu C S, Song H S, Wang Y H 2006 Phys. Rev. A 73 022340

    [10]

    Xia Y, Song J, Song H S 2007 Opt. Commun. 277 219

    [11]

    Yan F L, Zhang G H 2008 Int. J. Quantum Inf. 6 485

    [12]

    Liu J M, Feng X L, Oh C H 2009 EPL 87 30006

    [13]

    Dai H Y, Zhang M, Chen J M, Li C Z 2011 Chin. Phys. B 20 050310

    [14]

    Solis-Prosser M A, Neves L 2011 Phys. Rev.A 84 012330

    [15]

    An N B, Bich C T, Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506

    [16]

    Chen Z F, Liu J M, Ma L 2014 Chin. Phys.B 23 020312

    [17]

    Ma S Y, Luo M X, Chen X B, Yang Y X 2014 Quantum Inf. Process 13 1951

    [18]

    Hua C Y, Chen Y X 2015 Quantum Inf. Process 14 1069

    [19]

    Peng X H, Zhu X W, Fang X M, Feng M, Liu M L, Gao K L 2003 Phys. Lett.A 306 271

    [20]

    Babichev S A, Brezger B, Lvovsky A I 2004 Phys. Rev. Lett. 92 047903

    [21]

    Rosenfeld W, Berner S, Volz J, Weber M, Weinfurter H 2007 Phys. Rev. Lett. 98 050504

    [22]

    Barreiro J T, Wei T C, Kwiat P G 2010 Phys. Rev. Lett. 105 030407

    [23]

    Wu W, Liu W T, Chen P X, Li C Z 2010 Phys. Rev.A 81 042301

    [24]

    Radmark M, Wiesniak M, Zukowski M, Bourennane M 2013 Phys. Rev. A 88 032304

    [25]

    Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S 1994 Phys. Rev. A 50 895

    [26]

    Moussa M H Y 1996 Phys. Rev. A 54 4661

    [27]

    Zheng S B 2004 Phys. Rev. A 69 064302

    [28]

    Ye L, Guo G C 2004 Phys. Rev. A 70 054303

    [29]

    Cardoso W B, Avelar A T, Baseia B, de Almeida N G 2005 Phys. Rev.A 72 045802

    [30]

    Liu J M, Weng B, Xia Y 2006 J. Opt. Soc. Am. B 23 1499

    [31]

    Bose S, Knight P L, Plenio M B, Vedral V 1999 Phys. Rev. Lett. 83 5158

    [32]

    Zheng S B, Guo G C 2006 Phys. Rev.A 73 032329

    [33]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400

    [34]

    Li Y Q, Steuerman D W, Berezovsky J, Seferos D S, Bazan G C, Awschalom D D 2006 Appl. Phys. Lett. 88 193126

    [35]

    Atatre M, Dreiser J, Badolato A, Imamoglu A 2007 Nat. Phys. 3 101

    [36]

    Chen J J, An J H 2010 Int. J. Quantum Inf. 8 787

    [37]

    Chen J J, An J H, Feng M, Liu G 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095505

    [38]

    Bastos W P, Cardoso W B, Avelar A T, de Almeida N G, Baseia B 2012 Quantum Inf. Process 11 1867

    [39]

    An J H, Feng M, Oh C H 2009 Phys. Rev.A 79 032303

    [40]

    Chen Q, Feng M 2010 Phys. Rev. A 82 052329

    [41]

    Bastos W P, Cardoso W B, Avelar A T, Baseia B 2011 Quantum Inf. Process 10 395

    [42]

    Wang B, Chen Q, Yang W L, Kou S P 2012 Commun. Theor. Phys. 58 225

    [43]

    Pan G Z, Zhang G, Yuan H 2013 Int. J. Theor. Phys. 52 912

    [44]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [45]

    Luo M X, Li H R, Wang X J 2014 Eur. Phys. J. D 68 190

    [46]

    Chen X D, Xiao S J, Gu Y J, Lin X M 2010 Acta Phys. Sin. 59 5251 (in Chinese) [陈晓东, 肖邵军, 顾永建, 林秀敏 2010 物理学报 59 5251]

    [47]

    Cheng L Y, Wang H F, Zhang S, Yeon K W 2013 Chin. Phys. B 22 050306

    [48]

    Sun Q, He J, Ye L 2014 Chin. Phys. B 23 060305

    [49]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p121-135

    [50]

    Duan L M, Kimble H J 2004 Phys. Rev. Lett. 92 127902

    [51]

    Cao C, Wang C, He L Y, Zhang R 2013 Opt. Exp. 21 4093

    [52]

    Sheng Y B, Zhao S Y, Liu J, Zhou L 2014 Quantum Inf. Process 13 881

    [53]

    Zhang Y Q, Jin X R, Zhang S 2005 Chin. Phys. 14 1732

    [54]

    Xu X B, Liu J M 2006 Can. J. Phys. 84 1089

    [55]

    Xia Y, Song J, Song H S 2008 Inter. J. Theor. Phys. 47 3226

  • [1] Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun. A multifunctional quantum teleportation network. Acta Physica Sinica, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [2] Luo Jun-Wen, Wu De-Wei, Miao Qiang, Wei Tian-Li. Research progress in non-classical microwave states preparation based on cavity optomechanical system. Acta Physica Sinica, 2020, 69(5): 054203. doi: 10.7498/aps.69.20191735
    [3] Zhai Ze-Hui, Hao Wen-Jing, Liu Jian-Li, Duan Xi-Ya. Filter cavity design and length measurement for preparing Schrödinger cat state. Acta Physica Sinica, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [4] Ding Dong, He Ying-Qiu, Yan Feng-Li, Gao Ting. Generation of six-photon hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [5] Liu Rui, Yu Ya-Fei, Zhang Zhi-Ming. Generation of narrowband triphoton frequency-entangled states via cold-atom ensembles. Acta Physica Sinica, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [6] Zhou Chang-Zhu, Wang Chen, Li Zhi-Yuan. Fabrication and spectra-measurement of high Q photonic crystal cavity on silicon slabs. Acta Physica Sinica, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [7] Pan Wei, Yu He-Jun, Zhang Xiao-Guang, Xi Li-Xia. Numerical simulation and analysis of a high-Q two-dimensional photonic crystal L3 microcavity. Acta Physica Sinica, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [8] Feng Chen, Feng Guo-Ying, Chen Nian-Jiang, Zhou Shou-Huan. Ultrahigh-Q small-V photonic crystal nanobeam cavities based on parabolic-shaped width and taper holes. Acta Physica Sinica, 2012, 61(13): 134209. doi: 10.7498/aps.61.134209
    [9] Guo Zhen, Yan Lian-Shan, Pan Wei, Luo Bin, Xu Ming-Feng. Influence of decoherence of entanglement on deterministic remote state preparation. Acta Physica Sinica, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [10] Gu Yong-Jian, Chen Xiao-Dong, Lin Xiu-Min, Xiao Shao-Jun. Implementation of photon Bell-state and GHZ-state analyzers through the Faraday rotation. Acta Physica Sinica, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [11] Jiang Bin, Liu An-Jin, Chen Wei, Xing Ming-Xin, Zhou Wen-Jun, Zheng Wan-Hua. The characteristic of the stero-coupling high-Q photonic crystal slab cavity. Acta Physica Sinica, 2010, 59(12): 8548-8553. doi: 10.7498/aps.59.8548
    [12] Wang Yu-Wu, Zhan You-Bang. A theoretical scheme for zero-knowledge proof quantum identity authentication. Acta Physica Sinica, 2009, 58(11): 7668-7671. doi: 10.7498/aps.58.7668
    [13] Liang Hua-Qiu, Liu Jin-Ming. Remote state preparation with bipartite entangled states in noisy environments. Acta Physica Sinica, 2009, 58(6): 3692-3698. doi: 10.7498/aps.58.3692
    [14] Tao Yuan, Pan Wei, Luo Bin. A scheme for remote state preparation with low classical communication cost. Acta Physica Sinica, 2008, 57(4): 2016-2020. doi: 10.7498/aps.57.2016
    [15] Universal telecloning of quantum entangled states. Acta Physica Sinica, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [16] Shi Qing-Fan, Zheng Jun-Juan, Wang Qi. Effect of microwave cavity Q-value on the threshold of instability and autooscilations. Acta Physica Sinica, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [17] Yao Chun-Mei, Guo Guang-Can. . Acta Physica Sinica, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [18] Song Ke-hui. . Acta Physica Sinica, 2000, 49(3): 441-444. doi: 10.7498/aps.49.441
    [19] LI GAO-XIANG, PENG JIN-SHENG. PROPERTIES OF THE FIELD IN THE NONDEGENERATE TWO-PHOTON JAYNES-CUMMINGS MODEL INSIDE A HIGH Q CAVITY FILLED WITH A KERR-LIKE MEDIUM. Acta Physica Sinica, 1993, 42(9): 1443-1451. doi: 10.7498/aps.42.1443
    [20] LIU ZHENG-DONG. CONDITION OF GENERATING PHOTON NUMBER STATE IN OPTICAL CAVITY. Acta Physica Sinica, 1991, 40(2): 210-218. doi: 10.7498/aps.40.210
Metrics
  • Abstract views:  4305
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2015
  • Accepted Date:  19 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回