Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal mean photon number of decoy state protocol based on chameleon self-adaptive strategy under the background of rainfall

Nie Min Wang Yun Yang Guang Zhang Mei-Ling Pei Chang-Xing

Citation:

Optimal mean photon number of decoy state protocol based on chameleon self-adaptive strategy under the background of rainfall

Nie Min, Wang Yun, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As one of the most common weathers in daily life, the rain can change the atmospheric compositions and humidity in a short time, which may cause non-ignorable attenuation in free-space quantum communication system. Besides, the absorption and scattering effects caused by raindrops can also bring huge attenuation to photon's propagation. In order to solve this burst interference caused by rain weather, optimal mean photon number per pulse and chameleon self-adaptive algorithm (CSA) are proposed based on the rainfall distribution model and decoy-state quantum key distribution. Due to the lack of producing mature ideal single photon source technology, the decoy-state protocol with highly attenuated laser becomes the most practical and most widely used quantum secure communication protocol currently. Among all the different kinds of decoy-state protocols, the vacuum+weak decoy state quantum communication secure protocol is chosen to be the basis of our research. Besides, in order to study the influence of mean photon number per signal pulse, we set the pulse ratio between signal state, decoy state and vacuum state to be fixed at 2:2:1. Since the performance of the vacuum+weak decoy state quantum communication system is closely related to the mean photon number per pulse, it is very necessary to confirm the optimal value. Combining the Weibull rainfall distribution model and Mie scattering theory, we first analyze the attenuation caused by rainfall in a free-space quantum communication system. Then the functional relationship among opt, rainfall intensity (J) and link distance (L) is built by studying the propagation of highly attenuated laser in depolarizing channel. Finally, two parameters, secure key rate and channel survival function, are chosen to evaluate the system's performance of reliability and validity. These two parameters are respectively compared between the system with and without CSA. Simulation results show that, as J=30 mm/24 h, L=30 km, the secure key generation rate rises from 210-4 up to 3.510-4 when using the CSA in the quantum communication system; as J=60 mm/24 h, L=20 km, the quantum channel survival function value increases from 0.52 to 0.63; as the quantum channel survival function value is required no lower than 0.5, the rainfall intensity in which quantum communication system can survive rises from 62 mm/24 h up to 74 mm/24 h. These results prove that there is a close relationship between opt and the channel parameters of the quantum communication system under the background of rainfall. Therefore, it is necessary for us to self-adapt the opt value by combining rainfall intensity with the CSA strategy if the reliability and survivability of free space quantum communication system are required to be improved.
      Corresponding author: Wang Yun, 285025572@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318), and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nature Photonics 4 376

    [3]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nature Photonics 7 387

    [5]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Tyler GA, Boyd R W 2009 Opt. Lett. 34 142

    [8]

    Chen N, Quan D X, Pei C X, Yang H 2015 Chin. Phys. B 24 020304

    [9]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

    [10]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [11]

    ElliottC, Pearson D, Troxel G 2003 Acm Sigcomm Computer Communication Review 33 227

    [12]

    Marshall J S, Langile R C, Palmer W M 1947 Journal of the Atmospheric Science 4 186

    [13]

    Weibull W, Mech A J 1951 Journal of Applied Microelectron 28 613

    [14]

    Mie G 1908 Ann. Phys. 25 377

    [15]

    Liu M, Liu X G, Mou Y J 2012 Infrared and Laser Engineering 41 2136 (in Chinese) [刘敏, 刘锡国, 牟京燕 2012 红外与激光工程 41 2136]

    [16]

    Bruss D, Faoro L, Macchiavello C 2000 Journal of Modern Optics 47 325

    [17]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quant. Inf. Comput 5 325

    [18]

    Zhang L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 150301 [张琳, 聂敏, 刘晓慧 2013 物理学报 62 150301]

    [19]

    Liu T K, Wang J S, Liu X J, Zhan M S 2000 Acta Optica Sinica 20 1449 (in Chinese) [刘堂昆, 王继锁, 柳晓军, 詹明生 2000 光学学报 20 1449]

  • [1]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nature Photonics 4 376

    [3]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nature Photonics 7 387

    [5]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Tyler GA, Boyd R W 2009 Opt. Lett. 34 142

    [8]

    Chen N, Quan D X, Pei C X, Yang H 2015 Chin. Phys. B 24 020304

    [9]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

    [10]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [11]

    ElliottC, Pearson D, Troxel G 2003 Acm Sigcomm Computer Communication Review 33 227

    [12]

    Marshall J S, Langile R C, Palmer W M 1947 Journal of the Atmospheric Science 4 186

    [13]

    Weibull W, Mech A J 1951 Journal of Applied Microelectron 28 613

    [14]

    Mie G 1908 Ann. Phys. 25 377

    [15]

    Liu M, Liu X G, Mou Y J 2012 Infrared and Laser Engineering 41 2136 (in Chinese) [刘敏, 刘锡国, 牟京燕 2012 红外与激光工程 41 2136]

    [16]

    Bruss D, Faoro L, Macchiavello C 2000 Journal of Modern Optics 47 325

    [17]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quant. Inf. Comput 5 325

    [18]

    Zhang L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 150301 [张琳, 聂敏, 刘晓慧 2013 物理学报 62 150301]

    [19]

    Liu T K, Wang J S, Liu X J, Zhan M S 2000 Acta Optica Sinica 20 1449 (in Chinese) [刘堂昆, 王继锁, 柳晓军, 詹明生 2000 光学学报 20 1449]

  • [1] Zhan Shao-Kang, Wang Jin-Dong, Dong Shuang, Huang Si-Ying, Hou Qing-Cheng, Mo Nai-Da, Mi Shang, Xiang Li-Bing, Zhao Tian-Ming, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Finite-key analysis of decoy model semi-quantum key distribution based on four-state protocol. Acta Physica Sinica, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [2] Liu Yun-Feng, Li Zheng-Lin, Qin Ji-Xing, Wu Shuang-Lin, Wang Meng-Yuan, Zhou Jiang-Tao. Effects of wind and rainfall on ambient noise in the East Indian Ocean. Acta Physica Sinica, 2022, 71(20): 204303. doi: 10.7498/aps.71.20220615
    [3] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [4] Ma Xiao, Sun Ming-Shuo, Liu Jing-Yang, Ding Hua-Jian, Wang Qin. State preparation error tolerant quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [5] Liu Jin-Lu, Yang Jie, Zhang Tao, Fan Fan, Huang Wei, Xu Bing-Jie. An average photon number measurement scheme based on balanced homodyne detection. Acta Physica Sinica, 2021, 70(24): 240303. doi: 10.7498/aps.70.20211216
    [6] Xian Ming-Hao, Liu Xi-Chuan, Yin Min, Song Kun, Gao Tai-Chang. Inversion of vertical rainfall field based on earth-space links. Acta Physica Sinica, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [7] Zhou Yuan-Yuan, Zhang He-Qing, Zhou Xue-Jun, Tian Pei-Gen. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source. Acta Physica Sinica, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [8] Jiang Shi-Tai, Gao Tai-Chang, Liu Xi-Chuan, Liu Lei, Liu Zhi-Tian. Investigation of the inversion of rainfall field based on microwave links. Acta Physica Sinica, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [9] Zhou Xuan, Yang Xiao-Feng, Li Zi-Wei, Yu Yang, Ma Sheng. Rain effect on C-band scatterometer wind measurement and its correction. Acta Physica Sinica, 2012, 61(14): 149202. doi: 10.7498/aps.61.149202
    [10] Wen Hong-Yan, Yang Yang, Wei Lian-Fu. Dissipative dynamics of few-photon superposition states in optical microcavity. Acta Physica Sinica, 2012, 61(18): 184206. doi: 10.7498/aps.61.184206
    [11] Zhou Yuan-Yuan, Zhou Xue-Jun. Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source. Acta Physica Sinica, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [12] Huang Si-Xun, Du Hua-Dong, Zhong Ji-Qin, Zhao Yan-Lai. Regularization method of assimilating Doppler radar data and its influence on precipitation forecast. Acta Physica Sinica, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [13] Zhang Liang, Huang Si-Xun, Zhong Jian, Du Hua-Dong. New GMF+RAIN model based on rain rate and application in typhoon wind retrieval. Acta Physica Sinica, 2010, 59(10): 7478-7490. doi: 10.7498/aps.59.7478
    [14] Liu Xi-Chuan, Gao Tai-Chang, Qin Jian, Liu Lei. Effects analysis of rainfall on microwave transmission characteristics. Acta Physica Sinica, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [15] Quan Dong-Xiao, Pei Chang-Xing, Zhu Chang-Hua, Liu Dan. New method of decoy state quantum key distribution with a heralded single-photon source. Acta Physica Sinica, 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [16] Sun Xian-Ming, Han Yi-Ping, Shi Xiao-Wei. Monte Carlo simulation of backscattering by a melting layer of precipitation. Acta Physica Sinica, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [17] LI FU-LI, CHAI JIN-LIN, ZHANG ZHI-MING. A NEW METHOD FOR CONSTRUCTING ORTHONORMAL EIGENVECTORS OF HIGH ORDER POWER OF PHOTON ANNIHILATION OPERATOR. Acta Physica Sinica, 1993, 42(7): 1058-1064. doi: 10.7498/aps.42.1058
    [18] Li Fu-li;Cai Jin-lin;Zhang Zhi-ming. A NEW METHOD FOR CONSTRUCTING ORTHONORMAL EIGENVECTORS OF HIGH ORDER POWER OF PHOTON ANNIHILATION OPERATOR. Acta Physica Sinica, 1991, 40(7): 1058-1064. doi: 10.7498/aps.40.1058
    [19] GUO GUANG-CAN, CHAI JIN-HUA. GENERATION OF PHOTON-NUMBER SQUEEZED STATE BY OPTICALLY PUMPED THREE-LEVEL ATOMIC SYSTEM. Acta Physica Sinica, 1991, 40(6): 912-922. doi: 10.7498/aps.40.912
    [20] LIU ZHENG-DONG. CONDITION OF GENERATING PHOTON NUMBER STATE IN OPTICAL CAVITY. Acta Physica Sinica, 1991, 40(2): 210-218. doi: 10.7498/aps.40.210
Metrics
  • Abstract views:  4806
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2015
  • Accepted Date:  29 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回