Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Loading characteristics and dynamic behaviors of the plane tin flying layer driven by detonation collision

Chen Da-Wei Wang Pei Sun Hai-Quan Yu Xi-Jun

Citation:

Loading characteristics and dynamic behaviors of the plane tin flying layer driven by detonation collision

Chen Da-Wei, Wang Pei, Sun Hai-Quan, Yu Xi-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Under strong impact loading, metal materials will produce deformation and show ejecta behaviors. The mixing phenomenon, due to the detached matters entering into the background fluid, has a direct influence on the compression properties. According to the researches of ejecta, the damage and mixing are closely related with the loading state and the dynamic process. Up to now, many results have already been obtained under the condition of the directive impact of detonation. Further study on the metal materials response driven by detonation collision is needed. Previous studies have focused on the macro characteristics, such as the collision uplift and destruction. In this paper, we aim at the wave system's interaction process, in order to obtain the physical detail and to reveal the mechanisms of dynamic behaviors in the collision region. Investigations are carried out by means of both the numerical simulation and the shock polar theory analysis. Planer tin flying layer calculation model is designed for numerical simulation, so the sliding wave systems and shock conditions are obtained effectively. Based on the numerical results in the plane tin flying layer, the shock polar theory forecasts that the Mach reflection will occur, and the images of wave interactions given by numerical simulation also display the three-wave structure, which is the typical structure of the Mach reflection. Quantitative comparisons between the numerical results and theoretical analysis of the shock polar are in good agreement with each other. Furthermore, the critical conditions of Mach reflection in the cases of different shock conditions are given. Meanwhile typical characteristics of the histories of free surface velocity in the collision zone are analyzed. From the numerical and theoretical analyses, the shock dynamical model in the collision zone is proposed to reveal the mechanisms, and the model is very important for investigating the collision zone problem deeply in decomposition way. The results illustrate that in the collision zone there exist multiple kinds of shock loading ways, including one-dimensional once plane impact region, two-dimensional once oblique impact region, and two-dimensional twice oblique impacts region. The complex loading dynamic processes coupling with the unsteady flow field lead to the distributions of the peak pressure at different positions in the collision zone. The corresponding destroyed behaviors are shown, and thus we can establish the relationship between the reflection wave structure and the fracture morphology of the collision zone. This research results will provide an important theoretical support for the understanding and interpretation of the physical phenomena of material deformation, damage and mixing in the collision zone.
      Corresponding author: Wang Pei, wangpei@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261, 11571002, 11371069), and the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101021, 2013A0201010, 2015B0201043).
    [1]

    Walsh J, Shreffler R, Willig F 1953 J. Appl. Phys. 24 349

    [2]

    Wang T, Bai J S, Li P, Zhong M 2009 Chin. Phys. B 18 1127

    [3]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学报 61 234703]

    [4]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701

    [5]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [6]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D

    [7]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [8]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [9]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and shock wave 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [10]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Computers Fluids 83 177

    [11]

    Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chinese Jounal of High Pressure Physics 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压物理学报 23 283]

    [12]

    Singh M, Suneja H R, Bola M S, Prakash S 2002 Int. J. Impact Eng 27 939

    [13]

    Chen J, Sun C W, Pu Z M, Zhang G S, Gao N 2003 Explosion and shock wave 23 442 (in Chinese) [陈军, 孙承纬, 蒲正美, 张光升, 高宁 2003 爆炸与冲击 23 442]

    [14]

    Zhang C Y, Hu H B, Li Q Z 2013 Chinese jounal of high pressure physics 27 885 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压物理学报 27 885]

    [15]

    Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Wave 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]

    [16]

    Zhao Y L, Xiao D S, Dai H B 2007 Journal of Ordnance Engineering College 19 30 (in Chinese) [赵永玲, 肖东胜, 戴红彬 2007 军械工程学院学报 19 30]

    [17]

    Yu M, Sun Y T, Liu Q 2015 Acta Phys. Sin. 64 114702 (in Chinese) [于明, 孙宇涛, 刘全 2015 物理学报 64 114702]

    [18]

    Sun C W, Wei Y Z, Zhou Z K 2000 Application of Detonation Physics (Beijing: National Defence of Industry Press) p294-295 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社) 第 294-295 页]

    [19]

    Jia Z P, Zhang S D, Yu X J 2014 Computational method for multimaterial fluid dynamics (Beijing: Science Press) p59 (in Chinese) [贾祖朋, 张树道, 蔚喜军 2014 多介质流体动力学计算方法 (北京: 科学出版社) 第59页]

    [20]

    Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion and shock wave 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]

  • [1]

    Walsh J, Shreffler R, Willig F 1953 J. Appl. Phys. 24 349

    [2]

    Wang T, Bai J S, Li P, Zhong M 2009 Chin. Phys. B 18 1127

    [3]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学报 61 234703]

    [4]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701

    [5]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [6]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D

    [7]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [8]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [9]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and shock wave 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [10]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Computers Fluids 83 177

    [11]

    Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chinese Jounal of High Pressure Physics 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压物理学报 23 283]

    [12]

    Singh M, Suneja H R, Bola M S, Prakash S 2002 Int. J. Impact Eng 27 939

    [13]

    Chen J, Sun C W, Pu Z M, Zhang G S, Gao N 2003 Explosion and shock wave 23 442 (in Chinese) [陈军, 孙承纬, 蒲正美, 张光升, 高宁 2003 爆炸与冲击 23 442]

    [14]

    Zhang C Y, Hu H B, Li Q Z 2013 Chinese jounal of high pressure physics 27 885 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压物理学报 27 885]

    [15]

    Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Wave 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]

    [16]

    Zhao Y L, Xiao D S, Dai H B 2007 Journal of Ordnance Engineering College 19 30 (in Chinese) [赵永玲, 肖东胜, 戴红彬 2007 军械工程学院学报 19 30]

    [17]

    Yu M, Sun Y T, Liu Q 2015 Acta Phys. Sin. 64 114702 (in Chinese) [于明, 孙宇涛, 刘全 2015 物理学报 64 114702]

    [18]

    Sun C W, Wei Y Z, Zhou Z K 2000 Application of Detonation Physics (Beijing: National Defence of Industry Press) p294-295 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社) 第 294-295 页]

    [19]

    Jia Z P, Zhang S D, Yu X J 2014 Computational method for multimaterial fluid dynamics (Beijing: Science Press) p59 (in Chinese) [贾祖朋, 张树道, 蔚喜军 2014 多介质流体动力学计算方法 (北京: 科学出版社) 第59页]

    [20]

    Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion and shock wave 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]

  • [1] Jiang Chun-Hua, Zhao Zheng-Yu. Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Physica Sinica, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [2] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [3] Yu Ming, Sun Yu-Tao, Liu Quan. Analysis on refraction of detonation wave at the explosive-metal interface. Acta Physica Sinica, 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [4] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [5] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [6] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [7] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers. Acta Physica Sinica, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [8] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [9] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [10] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Yang Chao, Xia Meng-Zhong, Peng Kai. The numerical simulation of the electronic energy deposition and temperature variation in post-hole convolute of magnetically insulated transmission lines. Acta Physica Sinica, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [11] Li Hui, Zhou Qian-Hong, Guo Wen-Kang. Numerical simulation on the effect of shielding gas on the plasma cutting arc. Acta Physica Sinica, 2011, 60(2): 025214. doi: 10.7498/aps.60.025214
    [12] Zhang Yun-Yan, Fan Guang-Han, Zhang Yong, Zheng Shu-Wen. Effect of spectrum-control in dual-wavelength light-emitting diode by doped GaN interval layer. Acta Physica Sinica, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [13] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [14] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [15] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [16] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] Li Wei-Jun, Zhang Bo, Xu Wen-Lan, Lu Wei. Experimental and theoretical study of blue InGaN/GaN multiple quantum well blue light-emitting diodes. Acta Physica Sinica, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [18] Song Nan-Nan, Wu Shi-Ping, Luan Yi-Kun, Kang Xiu-Hong, Li Dian-Zhong. Numerical simulation and hydraulic experiment of horizontal centrifugal casting. Acta Physica Sinica, 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [19] Pang Xue-Xia, Deng Ze-Chao, Dong Li-Fang. Numerical simulation of particle species behavior in atmosphere plasmas with different ionization degree. Acta Physica Sinica, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [20] Zhang Ting, Ding Bo-Jiang. Simulation of effect of atomic process on poloidal CXRS measurement. Acta Physica Sinica, 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
Metrics
  • Abstract views:  5221
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2015
  • Accepted Date:  18 September 2015
  • Published Online:  20 January 2016

/

返回文章
返回