Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen vacancy defects in amorphous silica

Su Rui Zhang Hong Jiang Sheng-Li Chen Jun Han Wei

Citation:

Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen vacancy defects in amorphous silica

Su Rui, Zhang Hong, Jiang Sheng-Li, Chen Jun, Han Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, fused silica has been used to prepare the optical windows in the inertial confinement fusion (ICF) equipment. Challenge of application of fused silica is due to the defect-related optical absorption which is considered as the main mechanism of laser-induced damage process. However, due to structural complexity, calculation of the defect-related absorption from the first principles is only limited to small clusters, and a full treatment using the state of art GW and Bathe-Salpeter equation (BSE) method is still lacking.In this work, density functional theory calculations are performed to study the defect structure of the peroxy linkage (POL) and the neutral oxygen vacancy (NOV) defects in amorphous silica. Firstly, well relaxed structure is generated by using a combination of the bond switching Monte Carlo technique and the DFT-based structure optimization. Secondly, the defect structures are generated and studied in both the ground singlet (S0) and the first excited triplet (T1) states. Finally, the electronic and optical properties of the considered structures are studied by applying the self-consistent quasi-particle GW (sc-QPGW) and the BSE methods in Tamm-Dankoff approximation.In the ground state S0, the POL defect is found to be stable and shares a similar local structure to the H2O2 molecule. However, in T1 state, the POL defect breaks into a pair of E' center ( - Si ) and peroxy oxygen radial ( O-O-Si-). For the NOV defect, the optimized Si-Si bond length in the ground state is 2.51 with a variation of 0.1 due to the structural disorder. In comparison to the ground state, the optimized Si-Si bond length in T1 state increases to 3.56 .The scGW/BSE calculation on the defect free structure predicts a quasi particle band gap of 10.1 eV and an optical band gap of 8.0 eV, which are consistent well with the available experimental results. For the POL defect, the scGW/BSE calculation reveals a weak exciton peak at 6.3 eV. Below 6.3 eV, no new exciton peak is found, implying that the experimentally suggested 3.8 eV peak could not be attributed to the POL defect. Calculations of the NOV defect gives a strong and highly polarized optical absorption peak at 7.4 eV which is close to the previous experimental result at 7.6 eV. The structural relaxation induced by NOV also contributes to another absorption peak at 7.8 eV.
      Corresponding author: Chen Jun, jun_chen@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10744048, 11202032) and the National Defense Basic Scientific Research program of China (Grant No. B1520132013).
    [1]

    Kajihara K, Skuja L, Hirano M, Hosono H 2004 Phys. Rev. Lett. 92 15504

    [2]

    Kajihara K, Hirano M, Skuja L, Hosono H 2008 Phys. Rev. B 78 94201

    [3]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [4]

    Zhang Q L, Zhang J, Qiu K S, Zhang D X, Feng B H, Zhang J Y 2012 Chin. Phys. B 21 054216

    [5]

    Sakurai Y 2000 J. Non-Cryst. Solids 276 159

    [6]

    Fournier J, Nauport J, Grua P, Fargin E, Jubera V, Talaga D, Jouannigot S 2010 Opt. Express 18 21557

    [7]

    Skuja L, Gttler B, Schiel D, Silin A R 1998 Phys. Rev. B 58 14296

    [8]

    Natoli J Y, Bertussi B, Commandr M 2005 Opt. Lett. 30 1315

    [9]

    Fournier J, Grua P, Nauport J, 2013 Opt. Mater. Express 3 1

    [10]

    Duchateau G, Feit M D, Demos S G 2012 J. Appl. Phys. 111 093106

    [11]

    Nishikawa H, Tohmon R, Ohki Y, Nagasawa K, Hama Y 1989 J. Appl. Phys. 65 12

    [12]

    Nishikawa H, Shiroyama T, Nakamura R, Ohki Y, Nagasawa K, Hama Y 1992 Phys. Rev. B 45 586

    [13]

    Griscom D L, Friebele E J 1981 Phys. Rev. B 24 4896

    [14]

    Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L, Hirano M 2002 Solid State Commun. 122 117

    [15]

    Edwards A H, Fowler W B 1982 Phys. Rev. B 26 6649

    [16]

    Pacchioni G, Ieran G 1997 Phys. Rev. Lett. 79 753

    [17]

    Pacchioni G, Ierańo G 1998 Phys. Rev. B 57 818

    [18]

    Sulimov V B, Sushko P V, Edwards A H, Shluger A L, Stoneham A M 2002 Phys. Rev. B 66 24108

    [19]

    Tamura T, Lu G H, Yamamoto R, Kohyama M 2004 Phys. Rev. B 69 195204

    [20]

    Uchino T, Takahashi M, Yoko T 2000 Phys. Rev. B 62 2983

    [21]

    Sulimov V, Casassa S, Pisani C, Garapon J, Poumellec B 2000 Model. Simul. Mater. Sci. Eng. 8 763

    [22]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203

    [23]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2005 Phys. Rev. B 71 235204

    [24]

    Jiang S, Lu T, Long Y, Chen J 2012 J. Appl. Phys. 111 043516

    [25]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [26]

    Chiodo L, Garca-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A 2010 Phys. Rev. B 82 045207

    [27]

    Anderson N L, Vedula R P, Schultz P A, Van Ginhoven R M, Strachan A 2011 Phys. Rev. Lett. 106 206402

    [28]

    Su R, Xiang M, Chen J, Jiang S, Wei H 2014 J. Appl. Phys. 115 193508

    [29]

    Sadigh B, Erhart P, berg D, Trave A, Schwegler E, Bude J 2011 Phys. Rev. Lett. 106 027401

    [30]

    Wooten F, Winer K, Weaire D 1985 Phys. Rev. Lett. 54 1392

    [31]

    Von Alfthan S, Kuronen A, Kaski K 2003 Phys. Rev. B 68 073203

    [32]

    Mozzi B, Warren R 1969 J. Appl. Crystallogr. 2 164

    [33]

    Kresse J, Hafner G 1993 Phys. Rev. B 47 558

    [34]

    Kresse J, Hafner G 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Sakurai K, Nagasawa Y 2000 J. Non-Cryst. Solids 277 82

    [37]

    Kresse D, Joubert G 1999 Phys. Rev. B 59 1758

    [38]

    Bakos T, Rashkeev S, Pantelides S 2004 Phys. Rev. B 70

    [39]

    Donadio D, Bernasconi M, Boero M 2001 Phys. Rev. Lett. 87 195504

    [40]

    Van Ginhoven R M, Jnsson H, Peterson K A, Dupuis M, Corrales L R 2003 J. Chem. Phys. 118 6582

    [41]

    Faleev S V, van Schilfgaarde M, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [42]

    Schmidt W G, Glutsch S, Hahn P H, Bechstedt F 2003 Phys. Rev. B 67 085307

    [43]

    Saito A J, Ikushima K 2000 Phys. Rev. B 62 8584

    [44]

    Philipp H R 1966 Solid State Commun 4 73

    [45]

    Bak K L, Gauss J, Jurgensen P, Olsen J, Helgaker T, Stanton J F 2001 J. Chem. Phys. 114 6548

    [46]

    O'Reilly J, Robertson E 1983 Phys. Rev. B 27 3780

  • [1]

    Kajihara K, Skuja L, Hirano M, Hosono H 2004 Phys. Rev. Lett. 92 15504

    [2]

    Kajihara K, Hirano M, Skuja L, Hosono H 2008 Phys. Rev. B 78 94201

    [3]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [4]

    Zhang Q L, Zhang J, Qiu K S, Zhang D X, Feng B H, Zhang J Y 2012 Chin. Phys. B 21 054216

    [5]

    Sakurai Y 2000 J. Non-Cryst. Solids 276 159

    [6]

    Fournier J, Nauport J, Grua P, Fargin E, Jubera V, Talaga D, Jouannigot S 2010 Opt. Express 18 21557

    [7]

    Skuja L, Gttler B, Schiel D, Silin A R 1998 Phys. Rev. B 58 14296

    [8]

    Natoli J Y, Bertussi B, Commandr M 2005 Opt. Lett. 30 1315

    [9]

    Fournier J, Grua P, Nauport J, 2013 Opt. Mater. Express 3 1

    [10]

    Duchateau G, Feit M D, Demos S G 2012 J. Appl. Phys. 111 093106

    [11]

    Nishikawa H, Tohmon R, Ohki Y, Nagasawa K, Hama Y 1989 J. Appl. Phys. 65 12

    [12]

    Nishikawa H, Shiroyama T, Nakamura R, Ohki Y, Nagasawa K, Hama Y 1992 Phys. Rev. B 45 586

    [13]

    Griscom D L, Friebele E J 1981 Phys. Rev. B 24 4896

    [14]

    Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L, Hirano M 2002 Solid State Commun. 122 117

    [15]

    Edwards A H, Fowler W B 1982 Phys. Rev. B 26 6649

    [16]

    Pacchioni G, Ieran G 1997 Phys. Rev. Lett. 79 753

    [17]

    Pacchioni G, Ierańo G 1998 Phys. Rev. B 57 818

    [18]

    Sulimov V B, Sushko P V, Edwards A H, Shluger A L, Stoneham A M 2002 Phys. Rev. B 66 24108

    [19]

    Tamura T, Lu G H, Yamamoto R, Kohyama M 2004 Phys. Rev. B 69 195204

    [20]

    Uchino T, Takahashi M, Yoko T 2000 Phys. Rev. B 62 2983

    [21]

    Sulimov V, Casassa S, Pisani C, Garapon J, Poumellec B 2000 Model. Simul. Mater. Sci. Eng. 8 763

    [22]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203

    [23]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2005 Phys. Rev. B 71 235204

    [24]

    Jiang S, Lu T, Long Y, Chen J 2012 J. Appl. Phys. 111 043516

    [25]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [26]

    Chiodo L, Garca-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A 2010 Phys. Rev. B 82 045207

    [27]

    Anderson N L, Vedula R P, Schultz P A, Van Ginhoven R M, Strachan A 2011 Phys. Rev. Lett. 106 206402

    [28]

    Su R, Xiang M, Chen J, Jiang S, Wei H 2014 J. Appl. Phys. 115 193508

    [29]

    Sadigh B, Erhart P, berg D, Trave A, Schwegler E, Bude J 2011 Phys. Rev. Lett. 106 027401

    [30]

    Wooten F, Winer K, Weaire D 1985 Phys. Rev. Lett. 54 1392

    [31]

    Von Alfthan S, Kuronen A, Kaski K 2003 Phys. Rev. B 68 073203

    [32]

    Mozzi B, Warren R 1969 J. Appl. Crystallogr. 2 164

    [33]

    Kresse J, Hafner G 1993 Phys. Rev. B 47 558

    [34]

    Kresse J, Hafner G 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Sakurai K, Nagasawa Y 2000 J. Non-Cryst. Solids 277 82

    [37]

    Kresse D, Joubert G 1999 Phys. Rev. B 59 1758

    [38]

    Bakos T, Rashkeev S, Pantelides S 2004 Phys. Rev. B 70

    [39]

    Donadio D, Bernasconi M, Boero M 2001 Phys. Rev. Lett. 87 195504

    [40]

    Van Ginhoven R M, Jnsson H, Peterson K A, Dupuis M, Corrales L R 2003 J. Chem. Phys. 118 6582

    [41]

    Faleev S V, van Schilfgaarde M, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [42]

    Schmidt W G, Glutsch S, Hahn P H, Bechstedt F 2003 Phys. Rev. B 67 085307

    [43]

    Saito A J, Ikushima K 2000 Phys. Rev. B 62 8584

    [44]

    Philipp H R 1966 Solid State Commun 4 73

    [45]

    Bak K L, Gauss J, Jurgensen P, Olsen J, Helgaker T, Stanton J F 2001 J. Chem. Phys. 114 6548

    [46]

    O'Reilly J, Robertson E 1983 Phys. Rev. B 27 3780

  • [1] Zhang Xue-Yang, Chen Jun, Hu Wang-Yu. Atomic simulation of surface damage of fused silica under laser irradiation. Acta Physica Sinica, 2023, 72(15): 156201. doi: 10.7498/aps.72.20230606
    [2] Zhang Li-Juan, Zhang Chuan-Chao, Chen Jing, Bai Yang, Jiang Yi-Lan, Jiang Xiao-Long, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Liao Wei. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface. Acta Physica Sinica, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [3] Shen Chao, Cheng Xiang-Ai, Tian Ye, Xu Zhong-Jie, Jiang Tian. Experimental and computational study of damage pocess induced by 1064 nm nanosecond laser pulse on the exit surface of fused silica. Acta Physica Sinica, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [4] Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang. Effect of thermal annealing on damage growth of mitigated site on fused silica. Acta Physica Sinica, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [5] Bai Yang, Zhang Li-Juan, Liao Wei, Zhou Hai, Zhang Chuan-Chao, Chen Jing, Ye Ya-Yun, Jiang Yi-Lan, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Zheng Wan-Guo. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements. Acta Physica Sinica, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [6] Han Wei, Feng Bin, Zheng Kui-Xing, Zhu Qi-Hua, Zheng Wan-Guo, Gong Ma-Li. Laser-induced damage growth of fused silica at 351 nm on a large-aperture high-power laser facility. Acta Physica Sinica, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [7] Tang Shi-Hui, Cao Xiu-Xia, He Lin, Zhu Wen-Jun. Effects of vacancy point defects and phase transitions on optical properties of shocked Al2O3. Acta Physica Sinica, 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [8] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [10] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [11] Liu Chun-Ming, Yang Liang, Yan Zhong-Hua, Jiang Yong, Wang Hai-Jun, Liao Wei, Xiang Xia, He Shao-Bo, Lü Hai-Bin, Yuan Xiao-Dong, Zheng Wan-Guo, Zu Xiao-Tao. The influence of CO2 laser local irradiation on the laser damage resistance of fused silica. Acta Physica Sinica, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [12] Zhang Chun-Lai, Liu Chun-Ming, Xiang Xia, Dai Wei, Wang Zhi-Guo, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Near-field modulated simulation of repaired site contained crack or bubble in fused silica subsurface. Acta Physica Sinica, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [13] Zhang Chun-Lai, Wang Zhi-Guo, Xiang Xia, Liu Chun-Ming, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Simulation of field intensification induced by pit-shaped crack on fused silica rear-surface. Acta Physica Sinica, 2012, 61(11): 114210. doi: 10.7498/aps.61.114210
    [14] Wang Hong-Yan, Zhang Zhi-Dong, Zhang Zhong-Yue, Sun Zhong-Hua. Optical properties of gold nanoring structures. Acta Physica Sinica, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [15] Liu Hong-Jie, Zhou Xin-Da, Huang Jin, Wang Feng-Rui, Jiang Xiao-Dong, Huang Jing, Wu Wei-Dong, Zheng Wan-Guo. Comparison of damage between front and rear surfaces under nanosecond 355nm laser irradiation on fused silica. Acta Physica Sinica, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [16] Li Jian-Hua, Zeng Xiang-Hua, Ji Zheng-Hua, Hu Yi-Pei, Chen Bao, Fan Yu-Pei. Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS. Acta Physica Sinica, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [17] Wang Feng-Rui, Huang Jin, Liu Hong-Jie, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution. Acta Physica Sinica, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [18] Liu Hong-Jie, Huang Jin, Wang Feng-Rui, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong. Effect of thermal stresses on fused silica surface on the laser induced damage. Acta Physica Sinica, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [19] Wang Sha, Chen Jun, Tong Li-Xin, Gao Qing-Song, Liu Chong, Tang Chun. Experimental and theoretical investigation of fused silica rod-fiber phase conjugator. Acta Physica Sinica, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [20] Liu Ting-Yu, Zhang Qi-Ren, Zhuang Song-Lin. Optical polarized properties for the PbWO4 crystal containing lead vacancy. Acta Physica Sinica, 2005, 54(8): 3780-3786. doi: 10.7498/aps.54.3780
Metrics
  • Abstract views:  4619
  • PDF Downloads:  241
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2015
  • Accepted Date:  26 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回