Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficient organic ternary solar cells based on PTB7 and PC70BM with Bis-PC70BM

Jin Shi-Qi Xu Zheng Zhao Su-Ling Zhao Jiao Li Yang Deng Li-Juan

Citation:

Efficient organic ternary solar cells based on PTB7 and PC70BM with Bis-PC70BM

Jin Shi-Qi, Xu Zheng, Zhao Su-Ling, Zhao Jiao, Li Yang, Deng Li-Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, solar cells, especially the bulk heterojunction (BHJ) polymer solar cells (PSCs), have attracted considerable attention. BHJ PSCs have several advantages such as easy fabrication, light weight, low cost and flexibility. The research on ternary BHJ PSCs will become a hot topic since incorporating near infrared region (NIR) low bandgap polymer materials into the donor/acceptor system can easily extend the absorption spectral range and improve the photon harvesting. In this paper, we investigate the ternary PSCs based on poly{4, 8-bis[(2-ethylhexyl)-oxy]benzo[1, 2-b:4, 5-b']dithiophene-2, 6-diyl-alt-3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3, 4-b]thiophene-4, 6-diyl} (PTB7); Bis adduct of phenyl-C71-butyric acid methyl ester (Bis-PC70BM); [6, 6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM). The performance of PSCs based on PTB7 and PC70BM may be improved by doping with Bis-PC70BM which is used as an electron-cascade acceptor material. Ternary blend PSCs with 3% Bis-PC70BM exhibit a power conversion efficiency (PCE) of 7.00%, higher than that (6.07%) of the PTB7 :PC70BM binary blend. The open-circuit voltage (VOC) is 0.77 V, the short-circuit current (JSC) is 13.92 mA cm-2 and the fill factor (FF) is 65%. However, in our research, the absorption spectra for the films with different amount of Bis-PC70BM are hardly changed, implying that doping with Bis-PC70BM would not improve the photon harvesting. The LUMO (HOMO) energy levels of PTB7, Bis-PC70BM and PC70BM are -3.49 eV (-5.31 eV), -3.80 eV (-6.10 eV) and -3.91 eV (-6.20 eV), respectively. Due to the higher LUMO energy levels of Bis-PC70BM relative to PC70BM, the VOC increases when Bis-PC70BM is used. The cascade-like energy levels of ternary blend PSCs can facilitate the charge transfer at the donor/acceptor interface owing to the bridging effect. There are three routes for charge transfer (PTB7-Bis-PC70BM, Bis-PC70BM-PC70BM and PTB7-PC70BM) in ternary PSCs, more than that one in the binary PTB7:PC70BM counterpart. Moreover, PC70BM can provide a driving force to transfer the electrons on the LUMO of Bis-PC70BM to a lower energy orbital (the LUMO of PC70BM), which can facilitate charge transfer from PTB7 to Bis-PC70BM. Atomic force microscopy (AFM) images show that when 3% Bis-PC70BM is used, the film of the ternary blend active layer becomes smoother and the root-mean-square (RMS) roughness decreases from 1.87 nm to 1.80 nm. The decreased roughness is likely good for the contact between the PEDOT:PSS and the active layer, improving the transport rate. We have fabricated hole-only devices using a high-work-function material (Au) as the cathode to block the back injection of electrons in order to investigate charge carrier transport and collection in the PSCs. Result shows that doping with Bis-PC70BM may not change the hole mobility in the device. Besides, the Jph-Veff characteristics shows that doping with 3% Bis-PC70BM can facilitate exciton dissociation and charge collection at a low voltage. Our results indicate that using Bis-PC70BM as an electron-cascade acceptor material in PTB7 :PC70BM blend to fabricate ternary blend PSCs is a promising way to improve the PCE.
      Corresponding author: Xu Zheng, zhengxu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575019, 11474018), the Research Fund for the Doctoral Program of Higher Education (Grant No. 20130009130001), and the Fundamental Research Funds for the Central Universities (Grant No. 2012JBZ001).
    [1]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868

    [2]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [3]

    Dang M T, Hirsch L, Wantz G, Wuest J D 2013 Chem. Rev. 113 3734

    [4]

    Duan C, Zhang K, Zhong C, Huang F, Cao Y 2013 Chem. Soc. Rev. 42 9071

    [5]

    Li G, Zhu R, Yang Y 2012 Nat. Photonics 6 153

    [6]

    Krebs F C, Espinosa N, Hsel M, Sondergaard R R, Jorgensen M 2014 Adv. Mater. 26 29

    [7]

    Yip H L, Jen A K Y 2012 Energy Environ. Sci. 5 5994

    [8]

    Lin Y, Li Y, Zhan X 2012 Chem. Soc. Rev. 41 4245

    [9]

    Zhao X, Zhan X 2011 Chem. Soc. Rev. 40 3728

    [10]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [11]

    Bahrami A, Mohammadnejad S, Abkenar N J 2014 Chin. Phys. B 23 028803

    [12]

    Samadpour M, Zad A I, Molaei M 2014 Chin. Phys. B 23 047302

    [13]

    Ahmadi M, Dafeh S R 2015 Chin. Phys. B 24 0117203

    [14]

    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [15]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [16]

    Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F, Tang J X 2015 Adv. Mater. 27 1035

    [17]

    Li H, Zhang Z G, Li Y F, Wang J 2012 Appl. Phys. Lett. 101 163302

    [18]

    Bonaccorso F, Balis N, Stylianakis M M, Savarese M, Adamo C, Gemmi M, Pellegrini V, Stratakis E, Kymakis E 2015 Adv. Funct. Mater. 25 3870

    [19]

    Balis N, Konios D, Stratakis E, Kymakis E 2015 Chem. Nano. Mat. 1 346

    [20]

    Goh T, Huang J S, Bartolome B, Sfeir M Y, Vaisman M, Lee M L, Taylor A D 2015 J. Mater. Chem. A 3 18611

    [21]

    Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398

    [22]

    Lu L Y, Chen W, Xu T, Yu L P 2015 Nat. Commun. 6 7327

    [23]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847

    [24]

    Cheng P, Li Y, Zhan X 2014 Energy Environ. Sci. 7 2005

    [25]

    Ye L, Zhang S, Qian D, Wang Q, Hou J 2013 J. Phys. Chem. C 117 25360

    [26]

    He Y, Zhao G, Peng B, Li Y 2010 Adv. Funct. Mater. 20 3383

    [27]

    Peet J, Kim J, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C 2007 Nat. Mater. 6 497

    [28]

    Shuttle C G, Hamilton R, O'Regan B C, Nelson J, Durrant J R 2010 Proc. Natl. Acad. Sci. 107 16448

    [29]

    Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P 2013 Nano Lett. 13 2365

    [30]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [31]

    Shrotriya V, Yao Y, Li G, Yang Y 2006 Appl. Phys. Lett. 89 63505

    [32]

    Malliaras G, Salem J, Brock P, Scott C 1998 Phys. Rev. B 58 R13411

    [33]

    Wang Z, Zhang F, Li L, An Q, Wang J, Zhang J 2014 Appl. Surface Sci. 305 221

  • [1]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868

    [2]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [3]

    Dang M T, Hirsch L, Wantz G, Wuest J D 2013 Chem. Rev. 113 3734

    [4]

    Duan C, Zhang K, Zhong C, Huang F, Cao Y 2013 Chem. Soc. Rev. 42 9071

    [5]

    Li G, Zhu R, Yang Y 2012 Nat. Photonics 6 153

    [6]

    Krebs F C, Espinosa N, Hsel M, Sondergaard R R, Jorgensen M 2014 Adv. Mater. 26 29

    [7]

    Yip H L, Jen A K Y 2012 Energy Environ. Sci. 5 5994

    [8]

    Lin Y, Li Y, Zhan X 2012 Chem. Soc. Rev. 41 4245

    [9]

    Zhao X, Zhan X 2011 Chem. Soc. Rev. 40 3728

    [10]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [11]

    Bahrami A, Mohammadnejad S, Abkenar N J 2014 Chin. Phys. B 23 028803

    [12]

    Samadpour M, Zad A I, Molaei M 2014 Chin. Phys. B 23 047302

    [13]

    Ahmadi M, Dafeh S R 2015 Chin. Phys. B 24 0117203

    [14]

    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [15]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [16]

    Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F, Tang J X 2015 Adv. Mater. 27 1035

    [17]

    Li H, Zhang Z G, Li Y F, Wang J 2012 Appl. Phys. Lett. 101 163302

    [18]

    Bonaccorso F, Balis N, Stylianakis M M, Savarese M, Adamo C, Gemmi M, Pellegrini V, Stratakis E, Kymakis E 2015 Adv. Funct. Mater. 25 3870

    [19]

    Balis N, Konios D, Stratakis E, Kymakis E 2015 Chem. Nano. Mat. 1 346

    [20]

    Goh T, Huang J S, Bartolome B, Sfeir M Y, Vaisman M, Lee M L, Taylor A D 2015 J. Mater. Chem. A 3 18611

    [21]

    Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398

    [22]

    Lu L Y, Chen W, Xu T, Yu L P 2015 Nat. Commun. 6 7327

    [23]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847

    [24]

    Cheng P, Li Y, Zhan X 2014 Energy Environ. Sci. 7 2005

    [25]

    Ye L, Zhang S, Qian D, Wang Q, Hou J 2013 J. Phys. Chem. C 117 25360

    [26]

    He Y, Zhao G, Peng B, Li Y 2010 Adv. Funct. Mater. 20 3383

    [27]

    Peet J, Kim J, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C 2007 Nat. Mater. 6 497

    [28]

    Shuttle C G, Hamilton R, O'Regan B C, Nelson J, Durrant J R 2010 Proc. Natl. Acad. Sci. 107 16448

    [29]

    Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P 2013 Nano Lett. 13 2365

    [30]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [31]

    Shrotriya V, Yao Y, Li G, Yang Y 2006 Appl. Phys. Lett. 89 63505

    [32]

    Malliaras G, Salem J, Brock P, Scott C 1998 Phys. Rev. B 58 R13411

    [33]

    Wang Z, Zhang F, Li L, An Q, Wang J, Zhang J 2014 Appl. Surface Sci. 305 221

  • [1] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [2] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [4] Lan Wei-Xia, Gu Jia-Lu, Gao Xiao-Hui, Liao Ying-Jie, Zhong Song-Yi, Zhang Wei-Dong, Peng Yan, Sun Yu, Wei Bin. Research progress of organic solar cells based on photonic crystals. Acta Physica Sinica, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [5] Zhou Peng-Chao, Zhang Wei-Dong, Gu Jia-Lu, Chen Hui-Min, Hu Teng-Da, Pu Hua-Yan, Lan Wei-Xia, Wei Bin. Dual non-fullerene acceptors based high efficiency ternary organic solar cells. Acta Physica Sinica, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [6] Sun Long, Ren Hao, Feng Da-Zheng, Wang Shi-Yu, Xing Meng-Dao. Optical and electrical properties of short-pitch solar cells with finite-difference frequency-domain method. Acta Physica Sinica, 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [7] Zhang Ao, Chen Yun-Lin, Yan Jun, Zhang Chun-Xiu. Effects of organic cations on performance of halide perovskite solar cell. Acta Physica Sinica, 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [8] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying. Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells. Acta Physica Sinica, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [9] Deng Li-Juan, Zhao Su-Ling, Xu Zheng, Zhao Ling, Wang Lin. Mechanism of ternary polymer solar cells based on P3HT: PTB7-Th: PCBM. Acta Physica Sinica, 2016, 65(7): 078801. doi: 10.7498/aps.65.078801
    [10] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [11] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] Li Meng, Niu He-Ying, Yao Lu-Yan, Wang Dong-Liang, Zhou Zhong-Po, Ma Heng. Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Acta Physica Sinica, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [13] Pu Nian-Nian, Li Hai-Rong, Xie Long-Zhen. Influence of NiOx hole-transporting layer on the light absorption of the polymer solar cells. Acta Physica Sinica, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [14] Sun Kai, He Zhi-Qun, Liang Chun-Jun. Effect of multiple temperature-step annealing on the performances of polymer solar cells. Acta Physica Sinica, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [15] Huang Di, Xu Zheng, Zhao Su-Ling. Enhanced performance of organic light-emitting diodes by using PTB7 as anode modification layer. Acta Physica Sinica, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [16] Li Qing, Li Hai-Qiang, Zhao Juan, Huang Jiang, Yu Jun-Sheng. Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Acta Physica Sinica, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [17] Wang Peng, Guo Run-Da, Chen Yu, Yue Shou-Zhen, Zhao Yi, Liu Shi-Yong. Influence of gradient doping on photoelectric conversion efficiency of organic photovoltaic devices. Acta Physica Sinica, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [18] Li Rong-Hua, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [19] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] Xing Hong-Wei, Peng Ying-Quan, Yang Qing-Sen, Ma Chao-Zhu, Wang Run-Sheng, Li Xun-Shuan. Simulation of polymer-fullerene bulk heterojunction solar cell. Acta Physica Sinica, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
Metrics
  • Abstract views:  5055
  • PDF Downloads:  256
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2015
  • Accepted Date:  28 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回