Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolutions of two-qubit entangled system in different noisy environments and channels

Cao Lian-Zhen Liu Xia Zhao Jia-Qiang Yang Yang Li Ying-De Wang Xiao-Qin Lu Huai-Xin

Citation:

Evolutions of two-qubit entangled system in different noisy environments and channels

Cao Lian-Zhen, Liu Xia, Zhao Jia-Qiang, Yang Yang, Li Ying-De, Wang Xiao-Qin, Lu Huai-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum information technology is mainly based on quantum entanglement. As an important coherent superposition state, the coherence of quantum entanglement source is easily affected by environment and becomes fragile, which will lead to the failure of the quantum information processing. Thus, it is critical to reveal the evolutions of quantum entanglement source under different noisy environments and different noisy channels. Firstly, we experimentally prepare a high-fidelity two-bit entangled state by several technical methods. The fidelity observed for the state prepared in our experiment is 0.993 and the signal-to-noise ratio can reach up to 299. Then, we simulate the bit-flip noise and phase-shift noise (collective and non-collective) using the all-optical experimental setup. Finally, based on the entanglement qubit state, we experimentally study the evolutions of entanglement characteristic under different noisy environments and the single, double and mixed noisy channels. The experimental results show that for the same type of noise, the entanglement properties disappear fast when entangled qubit passes through dual channel noisy environment. The upper bounds of noise intensity to destroy the entanglement property are 0.25 and 0.26 for the single bit-flip noise and phase-shift noisy channels, respectively. The comparison between the two different kinds of noisy environments shows that the entanglement properties disappear fast when entangled bit passes through non-collective environment. The upper bounds of noise intensity are 0.08 and 0.14 for non-collective bit-flip and phase-shift noise to destroy the entanglement property, while the noise intensities are 0.14 and 0.23 for collective bit-flip and phase-shift noise, respectively. For different kinds of noises, the results show that bit-flip noise is more likely to destroy the entanglement properties than the phase-shift. Our results have great significance for the theoretical and experimental studies of entanglement decoherence and have important application value for quantum information processing technology based on the nonlinear optical system.
      Corresponding author: Lu Huai-Xin, luhuaixin@wfu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174224, 11404246, 11447225), the Natural Science Foundation of Shandong Province, China (Grant No. BS2015DX015), the Science and Technology Development Program of Shandong Province, China (Grant Nos. 2011YD01049, 2013YD01016), and the Higher School Science and Technology Program of Shandong Province, China (Grant Nos. J13LJ54, J15LJ54).
    [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [3]

    Varnava M, Browne D E, Rudolph T 2008 Phys. Rev. Lett. 100 060502

    [4]

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想, 张远颖 2015 物理学报 64 164210]

    [5]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 物理学报 64 160306]

    [6]

    Pakhshan E, Pouria P 2014 Quantum Inf. Process. 13 1789

    [7]

    Dr W, Briegel H J 2004 Phys. Rev. Lett. 92 180403

    [8]

    Aolita L, Chaves R, Cavalcanti D, Acn A, Davidovich L 2008 Phys. Rev. Lett. 100 080501

    [9]

    Zhang Y C, Bao W S, Wang X, Fu X Q 2015 Chin. Rhys. B 24 080307

    [10]

    Yang G H, Zhang B B, Li L 2015 Chin. Rhys. B 24 060302

    [11]

    Knoll L, Orlowski A 1995 Phys. Rev. A 51 1622

    [12]

    Vedral V, Plemin M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [13]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [14]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [15]

    Kwiat R G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [16]

    Lo F R, Bellpmo B, Maniscalco S, Compagno G 2013 Int. J. Mod. Phys. B 27 1345053

    [17]

    Xu J S, Li C F, Gong M, Zou X B, Chen L, Chen G, Tang J S, Guo G C 2009 New J. Phys. 11 043010

    [18]

    Almeida M P, deMelo F, Meyll M H, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [19]

    Lu H, Chen L K, Liu C, Xu P, Yao X C, Li L, Liu N L, Zhao B, Chen Y A, Pan J W 2014 Nat. Photon. 8 364

    [20]

    Lu H X, Cao L Z, Zhao J Q, Li Y D, Wang X Q 2014 Sci. Rep. 4 4476

    [21]

    Cao L Z, Zhao J Q, Wang X Q, Lu H X 2013 Sci. China: Phys. Mech. Astron 43 1079 (in Chinese) [曹连振, 赵加强, 王晓芹, 逯怀新 2013 中国科学: 物理学 力学 天文学, 43 1079]

    [22]

    Zhao J Q, Cao L Z, Wang X Q, Lu H X 2012 Phys. Lett. A 376 2377

    [23]

    Zhao J Q, Cao L Z, Lu H X, Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese) [赵加强, 曹连振, 逯怀新, 王晓芹 2013 物理学报 62 120301]

    [24]

    Lu H X, Zhao J Q, Cao L Z, Wang X Q 2011 Phys. Rev. A 84 44101

    [25]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [26]

    Chiaverini J 2004 Nature 432 602

    [27]

    Prevedel R, Tame M, Stefanov A, Paternostro M, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 99 250503

    [28]

    Reichle R 2006 Nature 443 838

    [29]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [30]

    Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204

  • [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [3]

    Varnava M, Browne D E, Rudolph T 2008 Phys. Rev. Lett. 100 060502

    [4]

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想, 张远颖 2015 物理学报 64 164210]

    [5]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 物理学报 64 160306]

    [6]

    Pakhshan E, Pouria P 2014 Quantum Inf. Process. 13 1789

    [7]

    Dr W, Briegel H J 2004 Phys. Rev. Lett. 92 180403

    [8]

    Aolita L, Chaves R, Cavalcanti D, Acn A, Davidovich L 2008 Phys. Rev. Lett. 100 080501

    [9]

    Zhang Y C, Bao W S, Wang X, Fu X Q 2015 Chin. Rhys. B 24 080307

    [10]

    Yang G H, Zhang B B, Li L 2015 Chin. Rhys. B 24 060302

    [11]

    Knoll L, Orlowski A 1995 Phys. Rev. A 51 1622

    [12]

    Vedral V, Plemin M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [13]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [14]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [15]

    Kwiat R G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [16]

    Lo F R, Bellpmo B, Maniscalco S, Compagno G 2013 Int. J. Mod. Phys. B 27 1345053

    [17]

    Xu J S, Li C F, Gong M, Zou X B, Chen L, Chen G, Tang J S, Guo G C 2009 New J. Phys. 11 043010

    [18]

    Almeida M P, deMelo F, Meyll M H, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [19]

    Lu H, Chen L K, Liu C, Xu P, Yao X C, Li L, Liu N L, Zhao B, Chen Y A, Pan J W 2014 Nat. Photon. 8 364

    [20]

    Lu H X, Cao L Z, Zhao J Q, Li Y D, Wang X Q 2014 Sci. Rep. 4 4476

    [21]

    Cao L Z, Zhao J Q, Wang X Q, Lu H X 2013 Sci. China: Phys. Mech. Astron 43 1079 (in Chinese) [曹连振, 赵加强, 王晓芹, 逯怀新 2013 中国科学: 物理学 力学 天文学, 43 1079]

    [22]

    Zhao J Q, Cao L Z, Wang X Q, Lu H X 2012 Phys. Lett. A 376 2377

    [23]

    Zhao J Q, Cao L Z, Lu H X, Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese) [赵加强, 曹连振, 逯怀新, 王晓芹 2013 物理学报 62 120301]

    [24]

    Lu H X, Zhao J Q, Cao L Z, Wang X Q 2011 Phys. Rev. A 84 44101

    [25]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [26]

    Chiaverini J 2004 Nature 432 602

    [27]

    Prevedel R, Tame M, Stefanov A, Paternostro M, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 99 250503

    [28]

    Reichle R 2006 Nature 443 838

    [29]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [30]

    Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [4] Guo Chun-Xiang, Jiao Zhi-Hong, Zhou Xiao-Xin, Li Peng-Cheng. Mechanism of laser intensity-dependent below-threshold harmonic generation. Acta Physica Sinica, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [5] Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence. Acta Physica Sinica, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [6] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [7] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [8] Zhou Yang, Guo Jian-Hong. Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [9] Zou Qin, Hu Xiao-Mian, Liu Jin-Ming. Effects of Dzyaloshinskii-Moriya interaction and intrinsic decoherence on quantum dense coding via a two-qubit Heisenberg spin system. Acta Physica Sinica, 2015, 64(8): 080302. doi: 10.7498/aps.64.080302
    [10] Liu Hong-Mei, Yang Chun-Hua, Liu Xin, Zhang Jian-Qi, Shi Yun-Long. Noise characterization of quantum dot infrared photodetectors. Acta Physica Sinica, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [11] Liu Qi-Gong, Ji Xin. Influence of initial entanglement on entanglement evolution under phase damping channel. Acta Physica Sinica, 2012, 61(23): 230303. doi: 10.7498/aps.61.230303
    [12] Guo Zhen, Yan Lian-Shan, Pan Wei, Luo Bin, Xu Ming-Feng. Influence of decoherence of entanglement on deterministic remote state preparation. Acta Physica Sinica, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [13] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [15] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [16] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [17] Xiang Shao-Hua, Song Ke-Hui. Entanglement decoherence of two-particle entangled states in a noisy environment. Acta Physica Sinica, 2006, 55(2): 529-534. doi: 10.7498/aps.55.529
    [18] Zhang Quan, Zhang Er-Yang, Tang Chao-Jing. . Acta Physica Sinica, 2002, 51(8): 1675-1683. doi: 10.7498/aps.51.1675
    [19] CHEN XIAO-YU. EVALUATION OF QUANTUM CAPACITY OF A SINGLE-MODE FERMI THERMAL NOISE CHANNEL. Acta Physica Sinica, 2001, 50(7): 1217-1220. doi: 10.7498/aps.50.1217
    [20] LI YONG-QING, WANG YU-ZHU. REDUCTION OF QUANTUM NOISE BY PHOTON CORRELATION. Acta Physica Sinica, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
Metrics
  • Abstract views:  4539
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2015
  • Accepted Date:  12 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回