Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation

Xing Wei Liu Hui Shi De-Heng Sun Jin-Feng Zhu Zun-Lüe

Citation:

icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation

Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The potential energy curves of twenty-three states generated from the twelve -S states (X1+, a3, 13+, 13, 11, 11-, 13-, 21+, 11, 23, 21 and 23+) correlating with the first dissociation channel C+(2Pu)+ F(2Pu) of the CF+ cation are obtained by using the internally contracted multireference configuration interaction approach with the Davidson modification (icMRCI+Q) on the basis of the correlation-consistent aug-cc-pV5Z and aug-cc-pV6Z basis sets for the first time. The spin-orbit coupling, core-valence correlation and relativistic corrections are taken into account, and all the potential energy curves are extrapolated to the complete basis set limit by separately extrapolating the Hartree-Fock and correlation energies scheme. Based on the calculated potential energy curves, the spectroscopic parameters of the bound and quasibound nine -S and sixteen states of the CF+ cation are obtained. And the spectroscopic parameters of X1+and a31st well-S states which are in very good agreement with experimental results are achieved. Furthermore, the vertical and adiabatic ionization potentials of ionization from the X2 state of CF radical to the bound and quasibound nine -S states of the CF+ cation are calculated, and the vertical and adiabatic ionization potentials of the CF+(X1+) CF(X2 ) and CF+(a31st well) CF(X2 ) ionizations are also in good agreement with the corresponding experimental values. Various curve crossings of -S states are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a31st well, 111st well and 21+ states are analyzed for the first time. The spin-orbit-induced predissociations for the a31st well, 111st well and 21+-S states could happen, and the predissociations of the a31st well, 111st well and 21 +-S states start around the vibrational levels ' = 15, ' = 1 and ' = 1, respectively. Relative energies of the twenty-three states in the dissociation limits are given, and our calculations match the experimental results very well. Finally, the Franck-Condon factors and radiative lifetimes of transitions from (2) 0+1st well (;'=05), (1) 11st well ('=05) and (2) 11st well ('=0) to X0+ states are predicted for the future laboratory research.
      Corresponding author: Xing Wei, wei19820403@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132 11274097), the Program for Science and Technology of Henan Province, China (Grant No. 142300410201), the Key Program for Scientific Research of the Higher Education Institutions of Henan Province, China (Grant No. 14B140024).
    [1]

    Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 L37

    [2]

    Guzmn V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 L1

    [3]

    Faber K T, Malloy K J 1992 The Mechanical Propierties of Semiconductors. Semiconductors and Semimetals (Vol. 37) (Boston: Academic Press) pp79-142

    [4]

    Walter T A, Lifshitz C, Chupka W A, Berkowitz J 1969 J. Chem. Phys. 51 3531

    [5]

    Carroll D K, Grennan T P 1970 J. Phys. B: At. Mol. Phys. 3 865

    [6]

    Hildenbrand D L 1975 Chem. Phys. Lett. 32 523

    [7]

    Hepburn J W, Trevor D J, Pollard J E, Shirley D A, Lee Y T 1982 J. Chem. Phys. 76 4287

    [8]

    Dyke J M, Lewis A E, Morris A 1984 J. Chem. Phys. 80 1382

    [9]

    Kawaguchi K, Hirota E 1985 J. Chem. Phys. 83 1437

    [10]

    Gruebele M, Polak M, Saykally R J 1986 Chem. Phys. Lett. 125 165

    [11]

    Reid C J 1996 Chem. Phys. 210 501

    [12]

    Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49

    [13]

    O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [14]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [15]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [16]

    Botschwina P 1986 J. Mol. Spectrosc. 120 23

    [17]

    Peterson K A, Woods R C 1987 J. Chem. Phys. 87 4409

    [18]

    Peterson K A, Woods R C, Rosmus P, Werner H J 1990 J. Chem. Phys. 93 1889

    [19]

    Ricca A 1999 J. Phys. Chem. A 103 1876

    [20]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [21]

    Petsalakis I D, Theodorakopoulos G 2000 Chem. Phys. 254 181

    [22]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [23]

    Inostroza N, Letelier J R, Senent M L, Fuentealba P 2008 Spectrochim. Acta Part A 71 798

    [24]

    Wu Y J, Chen H F, Chou S L, Lin M Y, Cheng B M 2010 Chem. Phys. Lett. 497 12

    [25]

    Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300

    [26]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [27]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [28]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2015 物理学报 64 153101]

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [31]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [32]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [35]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [36]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [37]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)

    [38]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 24-60

    [39]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

  • [1]

    Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 L37

    [2]

    Guzmn V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 L1

    [3]

    Faber K T, Malloy K J 1992 The Mechanical Propierties of Semiconductors. Semiconductors and Semimetals (Vol. 37) (Boston: Academic Press) pp79-142

    [4]

    Walter T A, Lifshitz C, Chupka W A, Berkowitz J 1969 J. Chem. Phys. 51 3531

    [5]

    Carroll D K, Grennan T P 1970 J. Phys. B: At. Mol. Phys. 3 865

    [6]

    Hildenbrand D L 1975 Chem. Phys. Lett. 32 523

    [7]

    Hepburn J W, Trevor D J, Pollard J E, Shirley D A, Lee Y T 1982 J. Chem. Phys. 76 4287

    [8]

    Dyke J M, Lewis A E, Morris A 1984 J. Chem. Phys. 80 1382

    [9]

    Kawaguchi K, Hirota E 1985 J. Chem. Phys. 83 1437

    [10]

    Gruebele M, Polak M, Saykally R J 1986 Chem. Phys. Lett. 125 165

    [11]

    Reid C J 1996 Chem. Phys. 210 501

    [12]

    Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49

    [13]

    O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [14]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [15]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [16]

    Botschwina P 1986 J. Mol. Spectrosc. 120 23

    [17]

    Peterson K A, Woods R C 1987 J. Chem. Phys. 87 4409

    [18]

    Peterson K A, Woods R C, Rosmus P, Werner H J 1990 J. Chem. Phys. 93 1889

    [19]

    Ricca A 1999 J. Phys. Chem. A 103 1876

    [20]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [21]

    Petsalakis I D, Theodorakopoulos G 2000 Chem. Phys. 254 181

    [22]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [23]

    Inostroza N, Letelier J R, Senent M L, Fuentealba P 2008 Spectrochim. Acta Part A 71 798

    [24]

    Wu Y J, Chen H F, Chou S L, Lin M Y, Cheng B M 2010 Chem. Phys. Lett. 497 12

    [25]

    Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300

    [26]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [27]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [28]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2015 物理学报 64 153101]

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [31]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [32]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [35]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [36]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [37]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)

    [38]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 24-60

    [39]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

  • [1] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [3] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [4] Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation. Acta Physica Sinica, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [5] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lü, Lü Shu-Xia. Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride. Acta Physica Sinica, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [7] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [8] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [9] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [11] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [12] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [13] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [14] Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhang Jin-Ping, Zhu Zun-Lüe. Elastic collisions between O and D atoms at low temperature and accurate analytic potential energy function and molecular constants of the OD(X2Π) radical. Acta Physica Sinica, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [15] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [16] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [17] Ma Jing, Ding Lei, Gu Xue-Jun, Zheng Hai-Yang, Fang Li, Zhang Wei-Jun, Huang Chao-Qun, Wei Li-Xia, Yang Bin, Qi Fei. Photoionization studies of C2Cl4 using synchrotron radiation. Acta Physica Sinica, 2006, 55(1): 137-141. doi: 10.7498/aps.55.137
    [18] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [19] Mao Hua-Ping, Yang Lan-Rong, Wang Hong-Yan, Zhu Zheng-He, Tang Yong-Jian. Calculation of ionization potential and geometry of small yttrium metal clusters. Acta Physica Sinica, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  7035
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2015
  • Accepted Date:  13 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回