Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of NiSi0.7Ge0.3 epitaxial growth by Al interlayer mediation at 700 ℃

Ping Yun-Xia Wang Man-Le Meng Xiao-Ran Hou Chun-Lei Yu Wen-Jie Xue Zhong-Ying Wei Xing Zhang Miao Di Zeng-Feng Zhang Bo

Citation:

Mechanism of NiSi0.7Ge0.3 epitaxial growth by Al interlayer mediation at 700 ℃

Ping Yun-Xia, Wang Man-Le, Meng Xiao-Ran, Hou Chun-Lei, Yu Wen-Jie, Xue Zhong-Ying, Wei Xing, Zhang Miao, Di Zeng-Feng, Zhang Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The formation of Nickel based germanosilicides (NiSiGe) has attracted growing interest in the state-of-the-art metal oxide semiconductor field effect transistor (MOSFET) technology, because silicon-germanium alloy (Si1-xGex) is used as embedded source/drain stressor or channel material to enhance the hole mobility in the channel region. However, a major problem of NiSiGe film is that it has a poor thermal stability after annealing at high temperature (550 ℃), which leads to its agglomeration. In this work, we study the reaction between Ni and Si0.7Ge0.3 in the presence of an Al interlayer. Pure Ni (10 nm) film and Ni (10 nm)/Al (3 nm) bi-layers are deposited respectively on Si0.7Ge0.3 substrates by electron beam evaporation. Solid-phase reactions between Ni or Ni/Al and Si0.7Ge0.3 during rapid thermal processing in N2 ambient for 30 s are studied at 700 ℃. The un-reacted metal is subsequently etched in H2SO4 solution. The NiSi0.7Ge0.3 films are characterized by Rutherford backscattering spectrometry (RBS), crosssection transmission electron microscopy (XTEM), energy dispersive X-ray spectrometer (EDX), and secondary ion mass spectroscopy (SIMS) techniques. For the Ni/Si0.7Ge0.3 sample, the segregation of Ge at grain boundaries of nickel germanosilicides during the interfacial reactions of Ni with Si0.7Ge0.3 films and the subsequent formation of Ge-rich Si1-wGew (w0.3) are confirmed by the RBS and XTEM measurements. However, in the case of Al incorporation, a very uniform and smooth NiSi0.7Ge0.3 film is obtained with atomic NiSi0.7Ge0.3/Si0.7Ge0.3 interface. The orthorhombic NiSi0.7Ge0.3 is finally epitaxial grown on cubic Si0.7Ge0.3substrate tilted at a small as demonstrated by the High resolution XTEM. Furthermore, based on the EDX and SIMS measurements, it is found that most of the Al atoms from the original interlayer diffuse towards the NiSi0.7Ge0.3 surface, and finally form an oxide mixture layer. It is proposed that the addition of Al reduce Ni diffusion, balance the Ni/Si0.7Ge0.3 reaction and mediate the NiSi0.7Ge0.3 lattice constant. In addition, the main mechanism of epitaxial growth of NiSi0.7Ge0.3 film is analyzed in detail. In summary, Al mediation is experimentally proved to induce the epitaxial growth of uniform and smooth NiSi0.7Ge0.3 layer on relaxed Si0.7Ge0.3 substrate, providing a potential method of achieving source/drain contact material for SiGe complementary metal oxide semiconductor devices.
      Corresponding author: Ping Yun-Xia, xyping@sues.edu.cn;bozhang@mail.sim.ac.cn ; Zhang Bo, xyping@sues.edu.cn;bozhang@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306127, 61306126), the Innovation Project of Chinese Academy of Sciences (Grant No. CXJJ-14-M36), and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1418300).
    [1]

    Song Y, Zhou H, Xu Q 2011 Solid State Sci. 13 294

    [2]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron. Dev. Lett. 33 1687

    [3]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 P11

    [4]

    Zhang S L, stling M 2003 Crit. Rev. Solid. State. 1 28

    [5]

    Luo J, Qiu Z J, Zha C, Zhang Z, Wu D, Lu J, kerman J, stling M, Hultman L, Zhang S L 2010 Appl. Phys. Lett. 96 031911

    [6]

    Packan P, Akbar S, Armstrong M, Bergstrom D, Brazier M et al. 2009 IEDM Tech. Dig. 659

    [7]

    Wang J Y, Wang C, Li C, Chen S Y 2015 Acta Phys. Sin. 64 128102 (in Chinese) [汪建元, 王尘, 李成, 陈松岩 2015 物理学报 64 128102]

    [8]

    Wu W, Li X, Sun J, Shi Y, Zhao Y 2015 IEEE Electron. Dev. Lett. 62 1136

    [9]

    Huang S, Li C, Lu W, Wang C, Lin G, Lai H, Chen S 2014 Chin. Phys. B 23 048109

    [10]

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502 (in Chinese) [李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502]

    [11]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q 2014 Chin. Phys. Lett. 1 016101

    [12]

    Hu C, Xu P, Fu C, Zhu Z, Gao X, Jamshidi A, Noroozi M, Radamson H, Wu D P, Zhang S L 2012 Appl. Phys. Lett. 101 092101

    [13]

    Wang T, Guo Q, Liu Y, Yun J 2012 Chin. Phys. B 21 068502

    [14]

    Tang M, Huang W, Li C, Lai H, Chen S 2010 IEEE Electron. Dev. Lett. 31 863

    [15]

    Liu Q, Wang G, Guo Y, Ke X, Radamson H, Liu H, Zhao C, Luo J 2015 Microelectron. Eng. 133 6

    [16]

    Liu Q B, Wang G L, Duan N Y, Radamson H, Liu H, Zhao C, Luo J 2015 ECS J. Solid State Sci. Technol. 4 119

    [17]

    Zhang S L 2003 Microelectron. Eng. 70 174

    [18]

    Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T, Tung C H 2005 J. Appl. Phys. 98 033520

    [19]

    Xu Y, Ru G, Jiang Y, Qu X, Li B 2009 Appl. Surf. Sci. 256 305

    [20]

    Liu Q, Wang G, Guo Y, Ke X, Liu H, Zhao C, Luo J 2015 Vacuum 111 114

    [21]

    Jin L J, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Tung C H 2005 J. Appl. Phys. 97 104917

    [22]

    Zhang B, Yu W J, Zhao Q, Mussler G, Jin L, Buca D, Hollaender B, Zhang M, Wang X, Mantl S 2011 Appl. Phys. Lett. 98 252101

    [23]

    Liu L J, Jin L, Knoll L, Wirths S, Nichau A, Buca D, Mussler G, Hollnder B, Xu D, Di Z F, Zhang M, Zhao Q, Mantl S 2013 Appl. Phys. Lett. 103 231909

    [24]

    Zhao Q T, Knoll L, Zhang B, Buca D, Hartmann J M, Mantl S 2013 Microelectron. Eng. 107 190

    [25]

    Richter K W, Hiebl K 2003 Appl. Phys. Lett. 83 497

  • [1]

    Song Y, Zhou H, Xu Q 2011 Solid State Sci. 13 294

    [2]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron. Dev. Lett. 33 1687

    [3]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 P11

    [4]

    Zhang S L, stling M 2003 Crit. Rev. Solid. State. 1 28

    [5]

    Luo J, Qiu Z J, Zha C, Zhang Z, Wu D, Lu J, kerman J, stling M, Hultman L, Zhang S L 2010 Appl. Phys. Lett. 96 031911

    [6]

    Packan P, Akbar S, Armstrong M, Bergstrom D, Brazier M et al. 2009 IEDM Tech. Dig. 659

    [7]

    Wang J Y, Wang C, Li C, Chen S Y 2015 Acta Phys. Sin. 64 128102 (in Chinese) [汪建元, 王尘, 李成, 陈松岩 2015 物理学报 64 128102]

    [8]

    Wu W, Li X, Sun J, Shi Y, Zhao Y 2015 IEEE Electron. Dev. Lett. 62 1136

    [9]

    Huang S, Li C, Lu W, Wang C, Lin G, Lai H, Chen S 2014 Chin. Phys. B 23 048109

    [10]

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502 (in Chinese) [李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502]

    [11]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q 2014 Chin. Phys. Lett. 1 016101

    [12]

    Hu C, Xu P, Fu C, Zhu Z, Gao X, Jamshidi A, Noroozi M, Radamson H, Wu D P, Zhang S L 2012 Appl. Phys. Lett. 101 092101

    [13]

    Wang T, Guo Q, Liu Y, Yun J 2012 Chin. Phys. B 21 068502

    [14]

    Tang M, Huang W, Li C, Lai H, Chen S 2010 IEEE Electron. Dev. Lett. 31 863

    [15]

    Liu Q, Wang G, Guo Y, Ke X, Radamson H, Liu H, Zhao C, Luo J 2015 Microelectron. Eng. 133 6

    [16]

    Liu Q B, Wang G L, Duan N Y, Radamson H, Liu H, Zhao C, Luo J 2015 ECS J. Solid State Sci. Technol. 4 119

    [17]

    Zhang S L 2003 Microelectron. Eng. 70 174

    [18]

    Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T, Tung C H 2005 J. Appl. Phys. 98 033520

    [19]

    Xu Y, Ru G, Jiang Y, Qu X, Li B 2009 Appl. Surf. Sci. 256 305

    [20]

    Liu Q, Wang G, Guo Y, Ke X, Liu H, Zhao C, Luo J 2015 Vacuum 111 114

    [21]

    Jin L J, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Tung C H 2005 J. Appl. Phys. 97 104917

    [22]

    Zhang B, Yu W J, Zhao Q, Mussler G, Jin L, Buca D, Hollaender B, Zhang M, Wang X, Mantl S 2011 Appl. Phys. Lett. 98 252101

    [23]

    Liu L J, Jin L, Knoll L, Wirths S, Nichau A, Buca D, Mussler G, Hollnder B, Xu D, Di Z F, Zhang M, Zhao Q, Mantl S 2013 Appl. Phys. Lett. 103 231909

    [24]

    Zhao Q T, Knoll L, Zhang B, Buca D, Hartmann J M, Mantl S 2013 Microelectron. Eng. 107 190

    [25]

    Richter K W, Hiebl K 2003 Appl. Phys. Lett. 83 497

  • [1] Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [2] Cao Yu, Xue Lei, Zhou Jing, Wang Yi-Jun, Ni Jian, Zhang Jian-Jun. Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells. Acta Physica Sinica, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [3] Li Wen-Tao, Liang Yan, Wang Wei-Hua, Yang Fang, Guo Jian-Dong. Precise control of LaTiO3(110) film growth by molecular beam epitaxy and surface termination of the polar film. Acta Physica Sinica, 2015, 64(7): 078103. doi: 10.7498/aps.64.078103
    [4] Wang Jian-Yuan, Wang Chen, Li Cheng, Chen Song-Yan. Selective area growth of Ge film on Si. Acta Physica Sinica, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [5] He Qiong, Xu Xiang-Dong, Wen Yue-Jiang, Jiang Ya-Dong, Ao Tian-Hong, Fan Tai-Jun, Huang Long, Ma Chun-Qian, Sun Zi-Qiang. Growth mechanism and optoelectronic properties of vanadium oxide films prepared by Sol-Gel. Acta Physica Sinica, 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [6] Chen Cheng-Zhao, Zheng Yuan-Yu, Huang Shi-Hao, Li Cheng, Lai Hong-Kai, Chen Song-Yan. Epitaxial growth of thick Ge layers with low dislocation density on silicon substrate by UHV/CVD. Acta Physica Sinica, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [7] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [8] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [9] Zhang Li-Ping, Zhang Jian-Jun, Zhang Xin, Shang Ze-Ren, Hu Zeng-Xin, Zhang Ya-Ping, Geng Xin-Hua, Zhao Ying. Investigation of microcrystalline silicon germanium prepared by hydrogen and helium gas mixture diluted VHFPA-RTCVD. Acta Physica Sinica, 2008, 57(11): 7338-7343. doi: 10.7498/aps.57.7338
    [10] Ma Tian-Bao, Hu Yuan-Zhong, Wang Hui. Growth mechanism of diamond-like carbon film based on the simulation model of atomic motion. Acta Physica Sinica, 2007, 56(1): 480-486. doi: 10.7498/aps.56.480
    [11] Wu Gui-Bin, Ye Zhi-Zhen, Zhao Xing, Liu Guo-Jun, Zhao Bin-Hui. Poly-SiGe films prepared by metal-induced growth using UHVCVD system. Acta Physica Sinica, 2006, 55(7): 3756-3759. doi: 10.7498/aps.55.3756
    [12] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [13] Huang Ping, Xu Ting-Xian, Cui Cai-E. Preparation and growth of SrBi4Ti4O15 ferroelectric thin film by sol-gel method. Acta Physica Sinica, 2006, 55(3): 1464-1471. doi: 10.7498/aps.55.1464
    [14] Zhang Yong-Ju, Yu Sen-Jiang, Ge Hong-Liang, Wu Liang-Neng, Cui Yu-Jian. Growth mechanism and ordered structures of iron films sputter-deposited on silicone oil surfaces. Acta Physica Sinica, 2006, 55(10): 5444-5450. doi: 10.7498/aps.55.5444
    [15] Huang Wen, Zeng Hui-Zhong, Zhang Ying, Jiang Shu-Wen, Wei Xian-Hua, Li Yan-Rong. Effects on the mechanism of nucleation and orientation of amorphous PZT nano thin film treated by different crystallization technics. Acta Physica Sinica, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [16] Gu Jin-Hua, Zhou Yu-Qin, Zhu Mei-Fang, Li Guo-Hua, Ding Kun, Zhou Bing-Qing, Liu Feng-Zhen, Liu Jin-Long, Zhang Qun-Fang. Study on growth mechanism of low-temperature prepared microcrystalline Si thin f ilms. Acta Physica Sinica, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [17] Zhang Dong-Ping, Qi Hong-Ji, Shao Jian-Da, Fan Rui-Ying, Fan Zheng-Xiu. Mechanism of nodule growth in ion beam sputtering films. Acta Physica Sinica, 2005, 54(3): 1385-1389. doi: 10.7498/aps.54.1385
    [18] MA XI-YING, HE DE-YAN, CHEN GUANG-HUA. SYNTHESIS AND MECHANISM OF BC2N THIN FILMS IN STALK-LIKE GROWTH. Acta Physica Sinica, 2001, 50(10): 2023-2027. doi: 10.7498/aps.50.2023
    [19] CUI DA-FU, CHEN FAN, ZHAO TONG, SHI WEN-SHENG, CHEN ZHENG-HAO, ZHOU YUE-LIANG, LV HUI-BIN, YANG GUO-ZHEN, HUANG HUI-ZHONG, ZHANG HONG-XIA. TOPMOST SURFACE AND GROWTH MECHANISM OF BaTiO3 THIN FILM GROWN BY LAS ER MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 2000, 49(9): 1878-1882. doi: 10.7498/aps.49.1878
    [20] LI MEI-YA, WANG ZHONG-LIE, XIONG GUANG-CHENG, FAN SHOU-SHAN, ZHAO QING-TAI, LIN KUI-XUN. EPITAXIAL GROWTH OF La0.5Sr0.5CoO3 THIN FILMS AND ITS MECHANISMS. Acta Physica Sinica, 1999, 48(1): 114-120. doi: 10.7498/aps.48.114
Metrics
  • Abstract views:  4691
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2015
  • Accepted Date:  01 September 2015
  • Published Online:  05 February 2016

/

返回文章
返回