Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-field and far-field scanning terahertz spectroscopy based on photoconductive microprobe

Xu Yue-Hong Zhang Xue-Qian Wang Qiu Tian Zhen Gu Jian-Qiang Ouyang Chun-Mei Lu Xin-Chao Zhang Wen-Tao Han Jia-Guang Zhang Wei-Li

Citation:

Near-field and far-field scanning terahertz spectroscopy based on photoconductive microprobe

Xu Yue-Hong, Zhang Xue-Qian, Wang Qiu, Tian Zhen, Gu Jian-Qiang, Ouyang Chun-Mei, Lu Xin-Chao, Zhang Wen-Tao, Han Jia-Guang, Zhang Wei-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, terahertz radiation has been a branch of cutting-edge science and technology involving many fields such as public security, military defense and national economy. In the past, far-field measurements were widely carried out based on terahertz time-domain spectroscopy. But the spatial resolution is limited by far-field diffraction effect. In order to break diffraction limit and gain sub-wavelength spatial resolution in terahertz frequency region, a series of near-field detection methods came into being, such as confocal microscopy, using an aperture, guided mode, scattering, direct detection in the near-field, etc. Each method has its own advantages and disadvantages. Using the photoconductive-antenna tip is one of the direct detection methods and it delivers the possibility of near-field measurements of terahertz waves. In this method, the photoconductive-antenna tip is a tapered photoconductive tip probe. So it can be close enough to the sample surface and receive the near-field signal on the basis of principle of photoconductivity. In this way, high spatial resolution can be gained. In this article, we introduce our recent progress of near-field and far- field scanning terahertz spectroscopy system with photoconductive-antenna in detail. Firstly, we analyze and summarize the near-field detection methods that have been developed in these years. And then, using the femtosecond laser whose center wavelength is 800 nm and the photoconductive-antenna tip detector coupled with fiber, we construct fiber near-field/ far-field scanning terahertz spectroscopy (N/F-STS). The frequency bandwidth is in a range from 0.2 THz to 1.5 THz and the terahertz spot is circular and uniform indicated by performance test. Also the amplitude and phase of the terahertz field are recorded simultaneously. It has the ability to perform three-dimension scan in various experiment conditions conveniently. Finally, we introduce the real applications in our laboratory. N/F-STS can be used to scan spatial electric distribution in three dimensions and test the spectral properties in terahertz range like other traditional far-field methods. Nevertheless, the most importantly, N/F-STS is used to scan the terahertz near-field of samples, such as terahertz surface plasmon polaritons, etc. The presented method thus is useful in some application areas, such as metamaterials, graphene, surface plasmons, waveguide transmission, near-field imaging, biological test, and chip inspection.
      Corresponding author: Han Jia-Guang, jiaghan@tju.edu.cn;weili.zhang@okstate.edu ; Zhang Wei-Li, jiaghan@tju.edu.cn;weili.zhang@okstate.edu
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61427814, 61138001, 61205098, 61422509), the Scientific Research and Technology Development Projects of Guangxi, China(Grant No. 1598017-1), the Special fund of Guangxi distinguished experts of China
    [1]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer) p149

    [2]

    Hunsche S, Koch M, Brener I, Nuss M C 1998 Opt. Commun. 150 22

    [3]

    Zinovev N, Andrianov A, Gallant A, Chamberlain J, Trukhin V 2008 Jetp. Lett. 88 492

    [4]

    Adam A J L, Brok J M, Seo M A, Ahn K J, Kim D S, Kang J H, Park Q H, Nagel M, Planken P C M 2008 Opt. Express 16 7407

    [5]

    Bitzer A, Ortner A, Merbold H, Feurer T, Walther M 2011 Opt. Express 19 2537

    [6]

    Mitrofanov O, Brener I, Harel R, Wynn J D, Pfeiffer L N, West K W, Federici J 2000 Appl. Phys. Lett. 77 3496

    [7]

    Macfaden A J, Reno J L, Brener I, Mitrofanov O 2014 Appl. Phys. Lett. 104 011110

    [8]

    Mueckstein R, Graham C, Renaud C C, Seeds A J, Harrington J A, Mitrofanov O 2011 J. Infrared. Millim. Te. 32 1031

    [9]

    Natrella M, Mitrofanov O, Mueckstein R, Graham C, Renaud C C, Seeds A J 2012 Opt. Express 20 16023

    [10]

    Misra M, Andrews S R, Maier S A 2012 Appl. Phys. Lett. 100 191109

    [11]

    Misra M, Pan Y, Williams C R, Maier S A, Andrews S R 2013 J. Appl. Phys. 113 193104

    [12]

    Chiu C M, Chen H W, Huang Y R, Hwang Y J, Lee W J, Huang H Y, Sun C K 2009 Opt. Lett. 34 1084

    [13]

    Ishihara K, Ohashi K, Ikari T, Minamide H, Yokoyama H, Shikata J, Ito H 2006 Appl. Phys. Lett. 89 201120

    [14]

    Bethe H A 1944 Phy. Rev. 66 163

    [15]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [16]

    Liu J B, Mendis R, Sakoda N, Mittleman D 2011 Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on Houston, TX, October 2-7, 2011 p1-2

    [17]

    Liu J B, Mendis R, Mittleman D, Sakoda N 2012 Appl. Phys. Lett. 100 031101

    [18]

    Awad M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 94 051107

    [19]

    Adam R, Chusseau L, Grosjean T, Penarier A, Guillet J P, Charraut D 2009 J. Appl. Phys. 106 073107

    [20]

    Klein N, Lahl P, Poppe U, Kadlec F, Kuzel P 2005 J. Appl. Phys. 98 014910

    [21]

    Knab J R, Adam A J L, Chakkittakandy R, Planken P C M 2010 Appl. Phys. Lett. 97 031115

    [22]

    Chen Q, Zhang X C 2001 IEEE J. Sel. Top. Quant. 7 608

    [23]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104

    [24]

    Chen Q, Jiang Z P, Xu G X, Zhang X C 2000 Opt. Lett. 25 1122

    [25]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558

    [26]

    Planken P C M, van der Valk N C J 2004 Opt. Lett. 29 2306

    [27]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009

    [28]

    Yuan T, Park H, Xu J Z, Han H, Zhang X C 2005 Ultrafast Phenomena XIV (Berlin Heidelberg: Springer) p759

    [29]

    L L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [30]

    Lee J K, Plank P C M, Adam A J L 2007 Opt. Express 15 11781

    [31]

    Zhang Y, Wang X, Cui Y, Sun W 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September. 21-25, 2009 p1-2

    [32]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma SH, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [杨玉平, 施宇蕾, 严伟, 徐新龙, 马士华, 汪力 2009 物理学报 54 4079]

    [33]

    Wachter M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 95 041112

    [34]

    Nagel M, Safiei A, Sawallich S, Matheisen C, Pletzer T M, Mewe A A, Van der Borg N J C M, Cesar I, Kurz H 2013 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, October 1, 2013 p856

    [35]

    Bhattacharya A, Georgiou G, Sawallich S, Matheisen C, Nagel M, Gomez Rivas J 2014 Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on Tucson, AZ, September 14-19, 2014, p1

    [36]

    Nagel M, Michalski A, Kurz H 2011 Opt. Express 19 12509

    [37]

    Gallagher W J, Chi C C, Duling I N, Grischkowsky D, Halas N J, Ketchen M B, Kleinsasser A W 1987 Appl. Phys. Lett. 50 350

    [38]

    Grischkowsky D, Sren K, Martin V E, Fattinger C 1990 JOSA B 7 2006

    [39]

    Crooker S A 2002 Rev. Sci. Instrum. 73 3258

    [40]

    Ellrich F, Weinland T, Molter D, Jonuscheit J, Beigang R 2011 Rev. Sci. Instrum. 82 053102

    [41]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma H S, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [胡明列, 宋有建, 刘博文, 方晓惠, 张弛, 刘华刚, 刘丰, 王昌雷, 柴路, 邢岐荣, 王清月 2005 物理学报 54 4079]

    [42]

    Xu Y H, Zhang X Q, Tian Z, Gu J Q, Ouyang C M, Li Y F, Han J G, Zhang W L 2015 Appl. Phys. Lett. 107 021105

    [43]

    Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, Zhang S, Han J G, Zhang W L 2015 Adv. Opt. Mater. 3 779

    [44]

    McIntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S 2013 Chem. Phys. Lett. 558 104

    [45]

    Wachter M, Nagel M, Kurz H 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September 21-25, 2009 p1-2

    [46]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, OUyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031

    [47]

    Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S 2007 Appl. Phys. Lett. 91 071112

    [48]

    Zhang W L, Azad A K, Han J G, Xu J Z, Chen J, Zhang X C 2007 Phys. Rev. Lett. 98 183901

    [49]

    Zhang W L 2008 Eur. Phys. J. Appl. Phys. 43 1

    [50]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [51]

    Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M 2009 Opt. Express 17 3826

    [52]

    Bitzer A, Wallauer J, Helm H, Merbold H, Feurer T, Walther M 2009 Opt. Express 17 22108

    [53]

    Wang K L, Mittleman D M 2004 Nature 432 376

    [54]

    Jeon T I, Grischkowsky D 2006 Appl. Phys. Lett. 88 061113

    [55]

    Chakkittakandy R, Corver J A W M, Planken P C M 2009 J. Pharm. Sci. 99 932

    [56]

    Bitzer A, Ortner A, Walther M 2010 Appl. Opt. 49 E1

    [57]

    Serita K, Murakami H, Kawayama I, Tonouchi M 2013 2013 Conference on Lasers and Electro-Optics Paacific Rim Kyoto, June 30-July 4, 2013 p11

  • [1]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer) p149

    [2]

    Hunsche S, Koch M, Brener I, Nuss M C 1998 Opt. Commun. 150 22

    [3]

    Zinovev N, Andrianov A, Gallant A, Chamberlain J, Trukhin V 2008 Jetp. Lett. 88 492

    [4]

    Adam A J L, Brok J M, Seo M A, Ahn K J, Kim D S, Kang J H, Park Q H, Nagel M, Planken P C M 2008 Opt. Express 16 7407

    [5]

    Bitzer A, Ortner A, Merbold H, Feurer T, Walther M 2011 Opt. Express 19 2537

    [6]

    Mitrofanov O, Brener I, Harel R, Wynn J D, Pfeiffer L N, West K W, Federici J 2000 Appl. Phys. Lett. 77 3496

    [7]

    Macfaden A J, Reno J L, Brener I, Mitrofanov O 2014 Appl. Phys. Lett. 104 011110

    [8]

    Mueckstein R, Graham C, Renaud C C, Seeds A J, Harrington J A, Mitrofanov O 2011 J. Infrared. Millim. Te. 32 1031

    [9]

    Natrella M, Mitrofanov O, Mueckstein R, Graham C, Renaud C C, Seeds A J 2012 Opt. Express 20 16023

    [10]

    Misra M, Andrews S R, Maier S A 2012 Appl. Phys. Lett. 100 191109

    [11]

    Misra M, Pan Y, Williams C R, Maier S A, Andrews S R 2013 J. Appl. Phys. 113 193104

    [12]

    Chiu C M, Chen H W, Huang Y R, Hwang Y J, Lee W J, Huang H Y, Sun C K 2009 Opt. Lett. 34 1084

    [13]

    Ishihara K, Ohashi K, Ikari T, Minamide H, Yokoyama H, Shikata J, Ito H 2006 Appl. Phys. Lett. 89 201120

    [14]

    Bethe H A 1944 Phy. Rev. 66 163

    [15]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [16]

    Liu J B, Mendis R, Sakoda N, Mittleman D 2011 Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on Houston, TX, October 2-7, 2011 p1-2

    [17]

    Liu J B, Mendis R, Mittleman D, Sakoda N 2012 Appl. Phys. Lett. 100 031101

    [18]

    Awad M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 94 051107

    [19]

    Adam R, Chusseau L, Grosjean T, Penarier A, Guillet J P, Charraut D 2009 J. Appl. Phys. 106 073107

    [20]

    Klein N, Lahl P, Poppe U, Kadlec F, Kuzel P 2005 J. Appl. Phys. 98 014910

    [21]

    Knab J R, Adam A J L, Chakkittakandy R, Planken P C M 2010 Appl. Phys. Lett. 97 031115

    [22]

    Chen Q, Zhang X C 2001 IEEE J. Sel. Top. Quant. 7 608

    [23]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104

    [24]

    Chen Q, Jiang Z P, Xu G X, Zhang X C 2000 Opt. Lett. 25 1122

    [25]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558

    [26]

    Planken P C M, van der Valk N C J 2004 Opt. Lett. 29 2306

    [27]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009

    [28]

    Yuan T, Park H, Xu J Z, Han H, Zhang X C 2005 Ultrafast Phenomena XIV (Berlin Heidelberg: Springer) p759

    [29]

    L L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [30]

    Lee J K, Plank P C M, Adam A J L 2007 Opt. Express 15 11781

    [31]

    Zhang Y, Wang X, Cui Y, Sun W 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September. 21-25, 2009 p1-2

    [32]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma SH, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [杨玉平, 施宇蕾, 严伟, 徐新龙, 马士华, 汪力 2009 物理学报 54 4079]

    [33]

    Wachter M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 95 041112

    [34]

    Nagel M, Safiei A, Sawallich S, Matheisen C, Pletzer T M, Mewe A A, Van der Borg N J C M, Cesar I, Kurz H 2013 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, October 1, 2013 p856

    [35]

    Bhattacharya A, Georgiou G, Sawallich S, Matheisen C, Nagel M, Gomez Rivas J 2014 Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on Tucson, AZ, September 14-19, 2014, p1

    [36]

    Nagel M, Michalski A, Kurz H 2011 Opt. Express 19 12509

    [37]

    Gallagher W J, Chi C C, Duling I N, Grischkowsky D, Halas N J, Ketchen M B, Kleinsasser A W 1987 Appl. Phys. Lett. 50 350

    [38]

    Grischkowsky D, Sren K, Martin V E, Fattinger C 1990 JOSA B 7 2006

    [39]

    Crooker S A 2002 Rev. Sci. Instrum. 73 3258

    [40]

    Ellrich F, Weinland T, Molter D, Jonuscheit J, Beigang R 2011 Rev. Sci. Instrum. 82 053102

    [41]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma H S, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [胡明列, 宋有建, 刘博文, 方晓惠, 张弛, 刘华刚, 刘丰, 王昌雷, 柴路, 邢岐荣, 王清月 2005 物理学报 54 4079]

    [42]

    Xu Y H, Zhang X Q, Tian Z, Gu J Q, Ouyang C M, Li Y F, Han J G, Zhang W L 2015 Appl. Phys. Lett. 107 021105

    [43]

    Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, Zhang S, Han J G, Zhang W L 2015 Adv. Opt. Mater. 3 779

    [44]

    McIntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S 2013 Chem. Phys. Lett. 558 104

    [45]

    Wachter M, Nagel M, Kurz H 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September 21-25, 2009 p1-2

    [46]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, OUyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031

    [47]

    Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S 2007 Appl. Phys. Lett. 91 071112

    [48]

    Zhang W L, Azad A K, Han J G, Xu J Z, Chen J, Zhang X C 2007 Phys. Rev. Lett. 98 183901

    [49]

    Zhang W L 2008 Eur. Phys. J. Appl. Phys. 43 1

    [50]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [51]

    Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M 2009 Opt. Express 17 3826

    [52]

    Bitzer A, Wallauer J, Helm H, Merbold H, Feurer T, Walther M 2009 Opt. Express 17 22108

    [53]

    Wang K L, Mittleman D M 2004 Nature 432 376

    [54]

    Jeon T I, Grischkowsky D 2006 Appl. Phys. Lett. 88 061113

    [55]

    Chakkittakandy R, Corver J A W M, Planken P C M 2009 J. Pharm. Sci. 99 932

    [56]

    Bitzer A, Ortner A, Walther M 2010 Appl. Opt. 49 E1

    [57]

    Serita K, Murakami H, Kawayama I, Tonouchi M 2013 2013 Conference on Lasers and Electro-Optics Paacific Rim Kyoto, June 30-July 4, 2013 p11

  • [1] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] Wang Zhi-Quan, Shi Wei. Holographic detection of pulsed terahertz waves in terahertz time-domain spectroscopy. Acta Physica Sinica, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] Dou Lin, Ma Yan-Na, Gu Zhao-Qi, Liu Jia-Tong, Gu Fu-Xing. Passive near-field optical scanning imaging based on semiconductor nanowire/tapered microfiber probe. Acta Physica Sinica, 2022, 71(4): 044201. doi: 10.7498/aps.71.20211810
    [4] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [5] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [6] Zhong Min, Li Jiu-Sheng. Switchable frequency terahertz vortex beam generator. Acta Physica Sinica, 2022, 71(21): 217401. doi: 10.7498/aps.71.20221184
    [7] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [8] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [9] Research on Passive Near-field Optical Scanning Imaging Based on Semiconductor Nanowire/Tapered Microfiber Probe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211810
    [10] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [11] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [12] Zhang Zhuo-Cheng, Wang Yue-Ying, Zhang Xiao-Qiu-Yan, Zhang Tian-Yu, Xu Xing-Xing, Zhao Tao, Gong Yu-Bin, Wei Yan-Yu, Hu Min. Tip-sample interactions in terahertz scattering scanning near-field optical microscopy and its influences. Acta Physica Sinica, 2021, 70(24): 248703. doi: 10.7498/aps.70.20211715
    [13] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [14] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [15] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [16] Lu Wen-Liang, Lou Shu-Qin, Wang Xin, Shen Yan, Sheng Xin-Zhi. False-color terahertz imaging system based on terahertz time domain spectrocsopy. Acta Physica Sinica, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [17] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [18] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [19] ZHANG LI-YUAN, LI YONG-GUI, WANG QIAN-. PREPARATION OF OPTICAL PROBES FOR SCANNING NEAR-FIELD INFRARED MICROSCOPY BY ETCHING METHOD. Acta Physica Sinica, 2001, 50(12): 2322-2326. doi: 10.7498/aps.50.2322
    [20] WANG ZI-YANG, LI QIN, ZHAO JUN, GUO JI-HUA. STUDY OF THE DISTRIBUTION OF LIGHT INTENSITY OF THE FIBER PROBE OF TRANSMISSION SCANNING NEAR FIELD OPTICAL MICROSCOPY AND THE DISTRIBUTION OF EXCITED FLUORESCE NT MOLECULES. Acta Physica Sinica, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
Metrics
  • Abstract views:  6066
  • PDF Downloads:  394
  • Cited By: 0
Publishing process
  • Received Date:  11 August 2015
  • Accepted Date:  28 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回