Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical properties of LaTiO high-k gate dielectric Ge MOS Capacitor and Ti content optimization

Xu Huo-Xi Xu Jing-Ping

Citation:

Electrical properties of LaTiO high-k gate dielectric Ge MOS Capacitor and Ti content optimization

Xu Huo-Xi, Xu Jing-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ti is intentionally added into La2O3 to prepare LaTiO gate dielectric Ge metal-oxide-semiconductor (MOS) capacitor with both high k value and good interface quality. In order to examine the effects of Ti content on the electrical properties of the device, LaTiO films with different Ti/La2O3 ratios (10.6%, 18.4%, 25.7% and 31.5%) are deposited by reactively co-sputtering Ti and La2O3 targets. Capacitance-voltage curves, gate-leakage current properties and high-field stress characteristics of the devices are measured and analyzed. It is found that some electrical properties, such as interface-sate density, gate-leakage current, device reliability and k value, strongly depend on Ti content incorporated into La2O3. Ti incorporation can significantly increase the k value: the higher the Ti content, the larger the k value is. The relevant mechanism lies in the fact that higher Ti content leads to an increase of Ti-based oxide in the LaTi-based oxide, because Ti-based oxide has larger k value than La-based oxide. On the contrary, interface quality, gate-leakage current and device reliability deteriorate as Ti content increases because Ti-induced defects at and near the interface increase with Ti content increasing. Of the Ti/La2O3 ratios in the examined range, the largest Ti/La2O3 ratio is 31.5%, which results in the highest k value of 29.4, the largest gate-leakage current of 9.710-2 Acm-2 at Vg=1 V, the highest interface-sate density of 4.51012 eV-1cm-2 and the worst device reliability, while the La2O3 film without Ti incorporation exhibits the lowest k value of 11.7, the smallest gate-leakage current of 2.510-3 Acm-2 at Vg=1 V, the lowest interface-sate density of 3.31011 eV-1cm-2 and the best device reliability. As far as the trade-off among the electrical properties is concerned, 18.4% is the most suitable Ti/La2O3 ratio, which leads to a higher k value of 22.7, lower interface-sate density of 5.51011 eV-1cm-2, an acceptable gate-leakage current of 7.110-3 Acm-2 at Vg=1 V, and a better device reliability. In view of the fact mentioned above, excellent electrical properties could be obtained by setting Ti content to be an optimal value. Therefore, the optimization of Ti content is critical for LaTi-based oxide Ge MOS device preparation.
      Corresponding author: Xu Jing-Ping, 799904108@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274112), the Natural Science Foundation of Hubei Province, China (Grant No. 2011CDB165), and the Scientific Research Program of Huanggang Normal University, China (Grant No. 2012028803).
    [1]

    Zhao M, Liu L, Liang R R, Wang J, Xu J 2014 Jpn. J. Appl. Phys. 53 041301

    [2]

    Oh I K, Kim M K, Lee J S, Lee C W, Lansalot-Matras C, Noh W, Park J, Noori A, Thompson D, Chu S, Maeng W J, Kim H 2013 Appl. Surf. Sci. 287 349

    [3]

    Fan J B, Liu H X, Fei C X, Ma F, Fan X J, Hao Y 2013 Chin. Phys. B 22 037702

    [4]

    Bethge O, Henkel C, Abermann S, Pozzovivo G, Stoeger-pollach M, Werner W S M, Smoliner J, Bertagnolli E 2012 Appl. Surf. Sci. 258 3444

    [5]

    Bom N M, Soares G V, Krug C, Pezzi R P, Baumvol I J R, Radtke C 2012 Appl. Surf. Sci. 258 5707

    [6]

    Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P, Detavernier C 2010 Appl. Phys. Lett. 97 112905

    [7]

    Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K, Chen S Y 2012 Chin. Phys. B 21 117701

    [8]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [9]

    Li Q L, Xie Q, Jiang Y L, Ru G P, Qu X P, Li B Z, Zhang D W, Deduytsche D, Detavernier C 2011 Semicond. Sci. Tech. 26 125003

    [10]

    Xue B Q, Wang S K, Han L, Chang H D, Sun B, Zhao W, Liu H G 2013 Chin. Phys. B 22 107302

    [11]

    Maeng W J, Oh I K, Lee H B R, Kim M K, Lee C W, Lansalot C 2014 Appl. Surf. Sci. 321 214

    [12]

    Pi T W, Huang M L, Lee W C, Chu L K, Lin T D, Chiang T H, Wang Y C, Wu Y D 2011 Appl. Phys. Lett. 98 062903

    [13]

    Lamagna L, Wiemer C, Perego M, Volkos S N, Baldovino S, Tsoutsou D, Coulon P E, Fanciulli M 2010 J. Appl. Phys. 108 084108

    [14]

    Mirovic I Z, Althobaiti M, Weerakkody A D, Dhanak V R, Linhart W M, Veal T D, Sedghi N, Hall S, Chalker P R, Tsoutsou D, Dimoulas A 2014 J. Appl. Phys. 115 114102

    [15]

    Mavrou G, Galata S, Tsipas P, Sotiropoulos A, Panayiotatos Y A, Dimoulas A, Evangelou E K, Seo J W, Dieker C 2008 J. Appl. Phys. 103 014506

    [16]

    Cheng C L, Horng J H, Wu Y Z 2012 Dev. Mater. Reliab. 12 399

    [17]

    He G, Sun Z Q, Liu M, Zhang L D 2010 Appl. Phys. Lett. 97 192902

    [18]

    Hu A B, Xu Q X 2010 Chin. Phys. B 19 528

    [19]

    Xu H X, Xu J P, Li C X, Chan C L, Lai P T 2010 Appl. Phys. A 99 903

    [20]

    Xu H X, Xu J P, Li C X, Liu L, Lai P T, Chan C L 2009 Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits Xian, China, November 25-27, 2009 p225

    [21]

    Fu C H, Chang-Liao K S, Liu L J, Li C C, Chen T C, Cheng J W, Lu C C 2014 Electron Dev. 61 2662

    [22]

    Sun Q Q, Shi Y, Dong L, Liu H, Ding S J, Zhang D W 2008 Appl. Phys. Lett. 92 102908

    [23]

    Li C X, Zou X, Lai P T, Xu J P, Chen C L 2008 Microelectron. Reliab. 48 526

    [24]

    Lu N, Bai W, Ramirez A, Mouli C, Ritenour A, Lee M L, Antoniadis D, Kwong D L 2005 Appl. Phys. Lett. 87 051922

    [25]

    Arimura H, Naitou Y, Kitano N, Oku Y, Yamaguchi N, Kosuda M, Hosoi T, Shimura T, Watanabe H 2008 ECS Trans. 16 121

    [26]

    Lu N, Li H J, Gardner M, Wickramanayaka S 2005 Electron Dev. Lett. 26 298

    [27]

    Terman L M 1962 Solid State Electron. 5 285

  • [1]

    Zhao M, Liu L, Liang R R, Wang J, Xu J 2014 Jpn. J. Appl. Phys. 53 041301

    [2]

    Oh I K, Kim M K, Lee J S, Lee C W, Lansalot-Matras C, Noh W, Park J, Noori A, Thompson D, Chu S, Maeng W J, Kim H 2013 Appl. Surf. Sci. 287 349

    [3]

    Fan J B, Liu H X, Fei C X, Ma F, Fan X J, Hao Y 2013 Chin. Phys. B 22 037702

    [4]

    Bethge O, Henkel C, Abermann S, Pozzovivo G, Stoeger-pollach M, Werner W S M, Smoliner J, Bertagnolli E 2012 Appl. Surf. Sci. 258 3444

    [5]

    Bom N M, Soares G V, Krug C, Pezzi R P, Baumvol I J R, Radtke C 2012 Appl. Surf. Sci. 258 5707

    [6]

    Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P, Detavernier C 2010 Appl. Phys. Lett. 97 112905

    [7]

    Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K, Chen S Y 2012 Chin. Phys. B 21 117701

    [8]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [9]

    Li Q L, Xie Q, Jiang Y L, Ru G P, Qu X P, Li B Z, Zhang D W, Deduytsche D, Detavernier C 2011 Semicond. Sci. Tech. 26 125003

    [10]

    Xue B Q, Wang S K, Han L, Chang H D, Sun B, Zhao W, Liu H G 2013 Chin. Phys. B 22 107302

    [11]

    Maeng W J, Oh I K, Lee H B R, Kim M K, Lee C W, Lansalot C 2014 Appl. Surf. Sci. 321 214

    [12]

    Pi T W, Huang M L, Lee W C, Chu L K, Lin T D, Chiang T H, Wang Y C, Wu Y D 2011 Appl. Phys. Lett. 98 062903

    [13]

    Lamagna L, Wiemer C, Perego M, Volkos S N, Baldovino S, Tsoutsou D, Coulon P E, Fanciulli M 2010 J. Appl. Phys. 108 084108

    [14]

    Mirovic I Z, Althobaiti M, Weerakkody A D, Dhanak V R, Linhart W M, Veal T D, Sedghi N, Hall S, Chalker P R, Tsoutsou D, Dimoulas A 2014 J. Appl. Phys. 115 114102

    [15]

    Mavrou G, Galata S, Tsipas P, Sotiropoulos A, Panayiotatos Y A, Dimoulas A, Evangelou E K, Seo J W, Dieker C 2008 J. Appl. Phys. 103 014506

    [16]

    Cheng C L, Horng J H, Wu Y Z 2012 Dev. Mater. Reliab. 12 399

    [17]

    He G, Sun Z Q, Liu M, Zhang L D 2010 Appl. Phys. Lett. 97 192902

    [18]

    Hu A B, Xu Q X 2010 Chin. Phys. B 19 528

    [19]

    Xu H X, Xu J P, Li C X, Chan C L, Lai P T 2010 Appl. Phys. A 99 903

    [20]

    Xu H X, Xu J P, Li C X, Liu L, Lai P T, Chan C L 2009 Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits Xian, China, November 25-27, 2009 p225

    [21]

    Fu C H, Chang-Liao K S, Liu L J, Li C C, Chen T C, Cheng J W, Lu C C 2014 Electron Dev. 61 2662

    [22]

    Sun Q Q, Shi Y, Dong L, Liu H, Ding S J, Zhang D W 2008 Appl. Phys. Lett. 92 102908

    [23]

    Li C X, Zou X, Lai P T, Xu J P, Chen C L 2008 Microelectron. Reliab. 48 526

    [24]

    Lu N, Bai W, Ramirez A, Mouli C, Ritenour A, Lee M L, Antoniadis D, Kwong D L 2005 Appl. Phys. Lett. 87 051922

    [25]

    Arimura H, Naitou Y, Kitano N, Oku Y, Yamaguchi N, Kosuda M, Hosoi T, Shimura T, Watanabe H 2008 ECS Trans. 16 121

    [26]

    Lu N, Li H J, Gardner M, Wickramanayaka S 2005 Electron Dev. Lett. 26 298

    [27]

    Terman L M 1962 Solid State Electron. 5 285

  • [1] Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang. Adhesion properties of MoS2/SiO2 interface: Size and temperature effects. Acta Physica Sinica, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [2] Li Yao-Hua, Dong Yao-Yong, Dong Hui, Zheng Xue-Jun. Tearing behavior induced by van der Waals force at heterogeneous interface during two-dimensional MoS2 nanoindentation. Acta Physica Sinica, 2022, 71(19): 194601. doi: 10.7498/aps.71.20220875
    [3] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [4] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [5] Guo Rui-Hua, Lu Tai-Ping, Jia Zhi-Gang, Shang Lin, Zhang Hua, Wang Rong, Zhai Guang-Mei, Xu Bing-She. Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film. Acta Physica Sinica, 2015, 64(12): 127305. doi: 10.7498/aps.64.127305
    [6] Li Wen-Tao, Liang Yan, Wang Wei-Hua, Yang Fang, Guo Jian-Dong. Precise control of LaTiO3(110) film growth by molecular beam epitaxy and surface termination of the polar film. Acta Physica Sinica, 2015, 64(7): 078103. doi: 10.7498/aps.64.078103
    [7] Su Shao-Jian, Zhang Dong-Liang, Zhang Guang-Ze, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [8] Dai Xian-Ying, Yang Cheng, Song Jian-Jun, Zhang He-Ming, Hao Yue, Zheng Ruo-Chuan. Anisotropy and isotropy of hole effective mass of strained Ge. Acta Physica Sinica, 2012, 61(23): 237102. doi: 10.7498/aps.61.237102
    [9] Xiong Fei, Pan Hong-Xing, Zhang Hui, Yang Yu. Growth of Ge quantum dot at the mix-crystal interface self-induced on the ion beam sputtering deposition. Acta Physica Sinica, 2011, 60(8): 088102. doi: 10.7498/aps.60.088102
    [10] Zheng Yu-Ming, Wang Yan-Yan, Zhu Yu-Lan, Xing Yong-Zhong. Influence of nucleon motion on the effective mass and energy of kaon in dense nuclear matter. Acta Physica Sinica, 2011, 60(1): 012501. doi: 10.7498/aps.60.012501
    [11] Mu Wu-Di, Cheng Hai-Feng, Chen Zhao-Hui, Tang Geng-Ping, Wu Zhi-Qiao. Effect of rough interface on the thermoelectric figure of merit of the Bi2Te3/PbTe superlattice. Acta Physica Sinica, 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [12] Li Guo-Jun, Kang Xue-Liang, Li Yong-Ping. Far-field focusing properties of two-dimensional honeycomb photonic crystals and the effect of the interface. Acta Physica Sinica, 2007, 56(11): 6403-6407. doi: 10.7498/aps.56.6403
    [13] SHUI JIA-PENG, LIU YONG-SONG, PEI HUI-YUAN. COMPARISON BETWEEN THE INTERNAL FRICTION VALUES OF THE SPECIMEN AND THE VIBRATION SYSTEM. Acta Physica Sinica, 1998, 47(4): 658-663. doi: 10.7498/aps.47.658
    [14] KE SAN-HUANG, HUANG MEI-CHUN, WANG REN-ZHI. VALENCE-BAND OFFSETS AT St/Ge STRAINED HETEROINTERFACES UNDER DIFFERENT STRAIN CONDITIONS. Acta Physica Sinica, 1996, 45(1): 107-112. doi: 10.7498/aps.45.107
    [15] CHEN KAI-MAO, JIN SI-XUAN, WU LAN-QING, ZENG SHU-RONG, LIU HONG-FEI. INTERFACE STATES AND DEEP CENTERS IN Au-DOPED MOS STRUCTURES. Acta Physica Sinica, 1993, 42(8): 1324-1332. doi: 10.7498/aps.42.1324
    [16] CHEN KAI-MAO, WU LAN-QING, PENG QING-ZHI, LIU HONG-FEI. DEEP LEVEL IN BOTH Si/SiO2 INTERFACE AND ITS NEIGH-BOURHOOD AND Si/SiO2 INTERFACE STATES IN p TYPE SILICON MOS STRUCTURE. Acta Physica Sinica, 1992, 41(11): 1870-1879. doi: 10.7498/aps.41.1870
    [17] ZHANG REN-JI, CHU SHENG-LIN, WU ZI-QIN. CRYSTALLIZATION OF AMORPHOUS Ge IN Ge/Au, Ge/Ag BILAYER FILMS AND Ge-Au, Ge-Ag ALLOY FILMS. Acta Physica Sinica, 1986, 35(3): 365-374. doi: 10.7498/aps.35.365
    [18] Liu LI-zhong. A SIMPLIFIED MERCURY PROBE FOR CONTROLLING THE QUALITY OF Si-SiO_2 INTERFACES. Acta Physica Sinica, 1977, 26(3): 281-284. doi: 10.7498/aps.26.281
    [19] LU TAN, YANG KUO-SHEN, LO LEAU-FU. THE MASS OF MUONIC NEUTRINO. Acta Physica Sinica, 1964, 20(1): 19-32. doi: 10.7498/aps.20.19
    [20] HSU PEI-WEI, KUNG FAN-MEI, KUNG HSUCH-HUI. K-K RESONANCE. Acta Physica Sinica, 1964, 20(11): 1129-1134. doi: 10.7498/aps.20.1129
Metrics
  • Abstract views:  4321
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2015
  • Accepted Date:  09 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回