Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface segregation of AuCu3 by He+ and Au+ irradiation

Fa Tao Chen Tian-Xiang Han Lu-Hui Mo Chuan

Citation:

Surface segregation of AuCu3 by He+ and Au+ irradiation

Fa Tao, Chen Tian-Xiang, Han Lu-Hui, Mo Chuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Surface segregation is a significant phenomenon due to its influence on many surface processes, such as corrosion, oxidation and catalysis. Defects and vacancies produced by ion irradiation in alloys used in reactors or other radiation environments may also induce surface segregation. In this work, we deposit AuCu3 film on a Si(111) substrate by magnetic sputtering. He+ and Au+ produced by pelletron are used to simulate radiation fields in reactors, and surface segregation induced by ion irradiation is investigated. SRIM software is used to simulate ion range and displacements produced in sample. Rutherford backscattering spectrometry is used to determine concentration changes near the surface of sample before and after irradiation. The results show that two kinds of ion irradiations lead to different surface segregation trends. When irradiated by 2 MeV He+, Au elements are segregated at the surface of sample. Oppositely, when irradiated by 1 MeV Au+, Cu elements are observed at the surface of sample. After analysis and discussion, we consider that this phenomenon is induced by different vacancy distributions by He+ and Au+ irradiation. 2 MeV He+ produced Au and Cu vacancies are distributed in whole film from surface to substrate smoothly, except very near the surface the concentration of vacancies has an obvious reduction. As a result, a gradient of the vacancy concentration is formed between the surface and the interior of the film. As the concentration of vacancies on the surface is lower than in interior, it would lead to vacancy diffusion from interior to surface, equivalent to diffusions of Cu and Au atoms along the opposite directions. Because of lighter atomic mass, Cu atom has a faster diffusion rate than Au atom. As a result, the concentration of Au atoms near the surface increases. Unlike He+, Au+ produces a mass of vacancies near the surface of the film, consistent with the Bragg peak by energy deposition of Au+, but decreases rapidly inside the film. It leads to a gradient of the vacancy concentration from surface to interior of the film. When vacancies diffuse from surface to interior, Cu and Au atoms diffuse from interior to surface, the lighter Cu atom concentration increases faster than Au atom concentration. Our research results explain the different segregation trends by light ion with higher energy and heavy ion with lower energy. It may help to understand the surface segregation of alloys used in complex irradiation field.
      Corresponding author: Fa Tao, tao_fa@qq.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11205135), the Science and Technology Development Fund of the China Academy of Engineering Physics (Grant No. 2012B0301045) and the National High Technology Research and Development Program of China (Grant No. 2013AA8041073).
    [1]

    Burton J J, Hyman E, Fedak D G 1975 J. Catal. 37 106

    [2]

    Lea C, Seah M P 1975 Surf. Sci. 53 272

    [3]

    Abraham F F, Brundle C R 1981 J. Vacuum Sci. Technol. 18 506

    [4]

    Chelikowsky J R 1984 Surf. Sci. Lett. 139 L197

    [5]

    Good B, H G, Bozzolo, Abel P B 2000 Surf. Sci. 454 602

    [6]

    Wang B, Zhang J M, Liu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [张建民, 王博, 甘秀英, 殷保祥, 路彦冬, 徐可为 2011 物理学报 60 016601]

    [7]

    Wang D, Gao N, Gao Fei, Wang Z G 2014 Chin. Phys. Lett. 31 096801

    [8]

    Busby J T, Was G S, Kenik E A 2002 J. Nucl. Mater. 302 20

    [9]

    Fukuya K, Nakano M, Fujii K, Torimaru T 2004 J. Nucl. Sci. Technol. 41 594

    [10]

    Allen T R, Cole J I, Gan J, Was G S, Dropek R, Kenik E A 2005 J. Nucl. Mater. 342 90

    [11]

    Volker E, Williams F J, Calvo E J, Jacob T, Schiffrin D J 2012 Phys. Chem. Chem. Phys. 14 7448

    [12]

    Adams R D 2000 J. Organometal. Chem. 600 1

    [13]

    Datta A, Duan Z, Wang G 2012 Computat. Mater. Sci. 55 81

    [14]

    Vker E, Williams F J, Jacob T, Schiffrin D J 2014 J. Alloys Comp. 586 475

    [15]

    Burton J J, Helms C R, Polizzotti R S 1976 J. Chem. Phys. 65 1089

    [16]

    Kailas L, Audinot J N, Migeon H N, Bertrand P 2006 Composite Interfaces 4 423

    [17]

    Foiles S M 1985 Phys. Rev. B: Condens. Matter 32 7685

    [18]

    Zhang B, Taglauer E, Shu X, Hu W, Deng H 2005 Phys. Status Solidi Appl. Mater. 202 2686

    [19]

    Soisson F 2006 J. Nucl. Mater. 349 235

    [20]

    Evteev A V, Levchenko E V, Belova I V, Murch G E 2012 Phys. Metals Metallogr. 113 1202

    [21]

    Tsai W F, Liang J H, Kai J J 2005 Nucl. Instrum. Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms 241 573

    [22]

    Sorokin M V, Ryazanov A I 2006 J. Nucl. Mater. 357 82

    [23]

    Hackett M J, Busby J T, Miller M K, Was G S 2009 J. Nucl. Mater. 389 265

    [24]

    Hackett M J, Najafabadi R, Was G S 2009 J. Nucl. Mater. 389 279

    [25]

    Gupta G, Jiao Z, Ham A N, Busby J T, Was G S 2006 J. Nucl. Mater. 351 162

    [26]

    Lu Z, Faulkner R G, Sakaguchi N, Kinoshita H, Takahashi H, Flewitt P E J 2006 J. Nucl. Mater. 351 155

    [27]

    Hackett M J, Busby J T, Was G S 2008 Metall. Mater. Trans. a: Phys. Metall. Mater. Sci. 39A 218

    [28]

    Wharry J P, Jiao Z, Shankar V, Busby J T, Was G S 2011 J. Nucl. Mater. 417 140

    [29]

    Giacobbe M J, Rehn L E, Lam N Q, Okamoto P R, Funk L, Baldo P, McCormick A, Stubbins J F 1997 Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials

    [30]

    Wang L M, Wang S X, Ewing R C, Meldrum A, Birtcher R C, Provencio P N, Weber W J, Matzke H 2000 Mater. Sci. Eng. a: Struct. Mater. Propert. Microstruct. Process. 286 72

    [31]

    Jiao Z, Was G S 2011 Acta Mater. 59 1220

    [32]

    Watanabe K, Hashiba M, Yamashina T 1977 Surf. Sci. 69 721

    [33]

    Wandelt K, Brundle C R 1981 Phys. Rev. Lett. 46

    [34]

    Ziegler J F 1985 The Stopping and Range of Ions in Matter (Pergamon: Pergamon Press)

  • [1]

    Burton J J, Hyman E, Fedak D G 1975 J. Catal. 37 106

    [2]

    Lea C, Seah M P 1975 Surf. Sci. 53 272

    [3]

    Abraham F F, Brundle C R 1981 J. Vacuum Sci. Technol. 18 506

    [4]

    Chelikowsky J R 1984 Surf. Sci. Lett. 139 L197

    [5]

    Good B, H G, Bozzolo, Abel P B 2000 Surf. Sci. 454 602

    [6]

    Wang B, Zhang J M, Liu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [张建民, 王博, 甘秀英, 殷保祥, 路彦冬, 徐可为 2011 物理学报 60 016601]

    [7]

    Wang D, Gao N, Gao Fei, Wang Z G 2014 Chin. Phys. Lett. 31 096801

    [8]

    Busby J T, Was G S, Kenik E A 2002 J. Nucl. Mater. 302 20

    [9]

    Fukuya K, Nakano M, Fujii K, Torimaru T 2004 J. Nucl. Sci. Technol. 41 594

    [10]

    Allen T R, Cole J I, Gan J, Was G S, Dropek R, Kenik E A 2005 J. Nucl. Mater. 342 90

    [11]

    Volker E, Williams F J, Calvo E J, Jacob T, Schiffrin D J 2012 Phys. Chem. Chem. Phys. 14 7448

    [12]

    Adams R D 2000 J. Organometal. Chem. 600 1

    [13]

    Datta A, Duan Z, Wang G 2012 Computat. Mater. Sci. 55 81

    [14]

    Vker E, Williams F J, Jacob T, Schiffrin D J 2014 J. Alloys Comp. 586 475

    [15]

    Burton J J, Helms C R, Polizzotti R S 1976 J. Chem. Phys. 65 1089

    [16]

    Kailas L, Audinot J N, Migeon H N, Bertrand P 2006 Composite Interfaces 4 423

    [17]

    Foiles S M 1985 Phys. Rev. B: Condens. Matter 32 7685

    [18]

    Zhang B, Taglauer E, Shu X, Hu W, Deng H 2005 Phys. Status Solidi Appl. Mater. 202 2686

    [19]

    Soisson F 2006 J. Nucl. Mater. 349 235

    [20]

    Evteev A V, Levchenko E V, Belova I V, Murch G E 2012 Phys. Metals Metallogr. 113 1202

    [21]

    Tsai W F, Liang J H, Kai J J 2005 Nucl. Instrum. Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms 241 573

    [22]

    Sorokin M V, Ryazanov A I 2006 J. Nucl. Mater. 357 82

    [23]

    Hackett M J, Busby J T, Miller M K, Was G S 2009 J. Nucl. Mater. 389 265

    [24]

    Hackett M J, Najafabadi R, Was G S 2009 J. Nucl. Mater. 389 279

    [25]

    Gupta G, Jiao Z, Ham A N, Busby J T, Was G S 2006 J. Nucl. Mater. 351 162

    [26]

    Lu Z, Faulkner R G, Sakaguchi N, Kinoshita H, Takahashi H, Flewitt P E J 2006 J. Nucl. Mater. 351 155

    [27]

    Hackett M J, Busby J T, Was G S 2008 Metall. Mater. Trans. a: Phys. Metall. Mater. Sci. 39A 218

    [28]

    Wharry J P, Jiao Z, Shankar V, Busby J T, Was G S 2011 J. Nucl. Mater. 417 140

    [29]

    Giacobbe M J, Rehn L E, Lam N Q, Okamoto P R, Funk L, Baldo P, McCormick A, Stubbins J F 1997 Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials

    [30]

    Wang L M, Wang S X, Ewing R C, Meldrum A, Birtcher R C, Provencio P N, Weber W J, Matzke H 2000 Mater. Sci. Eng. a: Struct. Mater. Propert. Microstruct. Process. 286 72

    [31]

    Jiao Z, Was G S 2011 Acta Mater. 59 1220

    [32]

    Watanabe K, Hashiba M, Yamashina T 1977 Surf. Sci. 69 721

    [33]

    Wandelt K, Brundle C R 1981 Phys. Rev. Lett. 46

    [34]

    Ziegler J F 1985 The Stopping and Range of Ions in Matter (Pergamon: Pergamon Press)

  • [1] Xu Chi, Wan Fa-Rong. Analysis of dislocation characteristics and inside-outside contrasts in irradiated and annealed tungsten as a fusion reactor material. Acta Physica Sinica, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [2] Dan Min, Chen Lun-Jiang, He Yan-Bin, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Yin, Jin Fan-Ya. Defect Evolution in Y0.5Gd0.5Ba2Cu3O7-δ Layer by H Ion Irradiation. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [3] He Xiao-Xun, Li Bing-Sheng, Liu Rui, Zhang Tong-Min, Cao Xing-Zhong, Chen Li-Ming, Xu Shuai. Effect of Ti content on preparation and properties of TiB2-SiC-Ti materials. Acta Physica Sinica, 2022, 71(19): 192801. doi: 10.7498/aps.71.20220530
    [4] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] Dan Min, Chen Lun-Jiang, He Yan-Bin, Lü Xing-Wang, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Ying, Jin Fan-Ya. Defect evolution in Y0.5Gd0.5Ba2Cu3O7–δ superconducting layer irradiated by H+ ions. Acta Physica Sinica, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [6] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] Deng Yong-He, Zhang Yu-Wen, Tan Heng-Bo, Wen Da-Dong, Gao Ming, Wu An-Ru. Surface segregation, structural features, and diffusion of NiCu bimetallic nanoparticles. Acta Physica Sinica, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [8] Li Ming-Yang, Zhang Lei-Min, Lv Shasha, Li Zheng-Cao. Effects of ion irradiation and oxidation on point defects in IG-110 nuclear grade graphite. Acta Physica Sinica, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [9] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] Ding Bin-Feng, Xiang Feng-Hua, Wang Li-Ming, Wang Hong-Tao. Amending the ferromagnetic properties of Ga0.94Mn0.06As films by He+ irradiation. Acta Physica Sinica, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [11] Wang Bo, Zhang Jian-Min, Yin Bao-Xiang, Lu Yan-Dong, Gan Xiu-Ying, Xu Ke-Wei. Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals. Acta Physica Sinica, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [12] Liu Jian-Cai, Zhang Xin-Ming, Chen Ming-An, Tang Jian-Guo, Liu Sheng-Dan. Simulation of surface segregation of in to Al(001) surface. Acta Physica Sinica, 2010, 59(8): 5641-5645. doi: 10.7498/aps.59.5641
    [13] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] Zhang Hui, Zhang Guo-Ying, He Jun-Qi, Wang Dan, Yang Shuang. The influence of impurities on segregation of the (110) surface of O/RhxPt1-x alloy system. Acta Physica Sinica, 2008, 57(3): 1846-1850. doi: 10.7498/aps.57.1846
    [15] Wang Zhen-Xia, Pan Qiang-Yan, Hu Jian-Gang, Yong Zhen-Zhong, Hu Yong-Qing, Zhu Zhi-Yuan. Synthesis of diamond nanocrystals by double ions (40Ar+,C2H+6) bombardment. Acta Physica Sinica, 2007, 56(8): 4829-4833. doi: 10.7498/aps.56.4829
    [16] Qin Huai-Li, Xue Jian-Ming, Lai Jiang-Nan, Wang Jian-Yong, Miao Qi, Zhang Wei-Ming, Ma Lei, Yan Sha, Zhao Wei-Jiang, Gu Hong-Ya, Wang Yu-Gang. Biological response of Arabidopsis seed to MeV proton irradiation at different region of its embryo. Acta Physica Sinica, 2006, 55(11): 5991-5995. doi: 10.7498/aps.55.5991
    [17] Sun You-Mei, Zhu Zhi-Yong, Wang Zhi-Guang, Liu Jie, Zhang Chong-Hong, Jin Yun-Fan. Application of the thermal spike model to amorphous latent tracks in polycarbona te. Acta Physica Sinica, 2005, 54(4): 1707-1710. doi: 10.7498/aps.54.1707
    [18] Sun You-Mei, Liu Jie, Zhang Chong-Hong, Wang Zhi-Guang, Jin Yun-Fan, Duan Jing-Lai, Song Yin. Electronic energy loss of the latent track in heavy ion-irradiated polyimide. Acta Physica Sinica, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [19] Zhang Hui, Zhang Guo-Ying, Wang Rui-Dan, Zhou Yong-Jun, Li Xing. Influence of O adsorbed on different surfaces of NixCu1-x on the segregation of Cu. Acta Physica Sinica, 2005, 54(11): 5356-5361. doi: 10.7498/aps.54.5356
    [20] Zhang Hui, Zhang Guo-Ying, Li Xing, Liu Shi-Yang. The chemisorption of CO on a disordered binary alloy (NixCu1-x) and the mutual influence of chemisorption and surface segregation. Acta Physica Sinica, 2004, 53(9): 3152-3156. doi: 10.7498/aps.53.3152
Metrics
  • Abstract views:  5011
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2015
  • Accepted Date:  14 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回