Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-resolution intrusion localization algorithm through cepstrum in distributed fiber optic Sagnac interferometer

Pi Shao-Hua Wang Bing-Jie Zhao Dong Jia Bo

Citation:

Multi-resolution intrusion localization algorithm through cepstrum in distributed fiber optic Sagnac interferometer

Pi Shao-Hua, Wang Bing-Jie, Zhao Dong, Jia Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Distributed fiber optic sensors are studied extensively, for monitoring abnormal events in continuous space, due to the advantages of immunity to electrical interference, non-conductivity and light weight. Moreover, the position of abnormal events, such as intrusions, could be determined directly without additional measurements. Among the various techniques, Sagnac interferometers prove to be promising for providing high sensitivity and large dynamic range in detecting intrusions. Two interference light beams are used which are naturally of equal optical path length in static status. When an intrusion occurs along the sensing fiber, the two light beams arrive at the intrusion position in different time and thus cause different phase changes induced by the intrusion. Analysis of the phase difference signal can predict the intrusion position, as well as the existence of the intrusion. As a Faraday rotator mirror (FRM) connected in the far-end of sensing fiber, both beams travel twice to the intrusion position after being reflected by the FRM. The propagation time interval T between the two interactions corresponds to the distance between the intrusion position and the far-end of sensing fiber Lx, which is further extracted as the localization of intrusion. Previously, the auto-correlation algorithm deals with the phase difference signal in the time domain and the null-frequency algorithm is used in frequency domain to calculate the distance. However the poor localization performance usually can not meet the requirement in high-quality monitoring applications. To determine the position of an intrusion effectively and accurately, the localization algorithm which deals with the phase difference signal in cepstrum domain is proposed in this article. Inspired by the research on the pitch examination we first introduce the algorithm for intrusion localization. Through theoretical analysis, the phase difference signal can be regarded as the convolution of the original waveform of intrusion and the T-related transform function. By applying the fast Fourier transform to the logarithmic spectrum, the phase difference signal is changed into the cepstrum domain, where the original waveform of intrusion and the transform function behave differently and are separated. The propagation time interval T, as well as the distance Lx, can be directly acquired from the peak produced by the transform function. In addition, to overcome the roughness in localization resolution brought by down-sampling of the phase difference signal, the decimator factor is scanned from 30 to 50 for multi-resolution localization at an original sampling rate 4 million/s-1. Besides the basic peak, high order peaks also emerge in the cepstrum in high signal-noise-ratio condition, which can also be used for localization. Since the localizations from different decimator factor and different peaks spread around the actual distance, an average of all reasonable localizations is calculated as the ultimate localization result for the intrusion. Firstly in experiments, intrusions occurring at a position 40.498 km are produced for the verification of the algorithm. The localizations are 40.489, 40.515 and 40.487 km, with localization errors as small as 9, 17 and 11 m respectively. Intrusions at different positions are tested and also correctly localized. For comparison, the standard deviations of localization error are respectively 695 m and 118 m for the auto-correlation algorithm and the null frequency algorithm, which are 58 times and 10 times of the result 12 m, which is obtained by the proposed cepstrum algorithm. The performance suggests promise to achieve better localization in practical applications.
      Corresponding author: Zhao Dong, zhaodongfudan@163.com
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2013BAK02B03), the National Natural Science Foundation of China (Grant No. 61107077), the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 2014YQ090709), and the Shanghai Committee of Science and Technology, China (Grant Nos. 14DZ2281200, 14511101800).
    [1]

    Cao Y, Pei Y W, Tong Z R 2014 Acta Phys. Sin. 63 024206 (in Chinese) [曹晔, 裴庸惟, 童峥嵘 2014 物理学报 63 024206]

    [2]

    Leung C K, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z 2015 Mater. Struct. 48 871

    [3]

    Jiang Z X, Cui B T 2015 Chin. Phys. B 24 020702

    [4]

    Zhou D P, Qin Z G, Li W H, Chen L, Bao X Y 2012 Opt. Express 20 13138

    [5]

    Xu Q, Xu H Y, Song Y H, Xiao Q 2014 Chin. J. Sci. Instrum. 35 216 (in Chinese) [徐锲, 许海燕, 宋耀华, 肖倩 2014 仪器仪表学报 35 2161]

    [6]

    Zhang J, Hoffman A, Kane A, Lewis J 2014 Proceedings of the 10th International Pipeline Conference Calgary, Alberta, Canada, September 29-October 3, 2014 p33619

    [7]

    Zubia J, Casado L, Aldabaldetreku G, Montero A, Zubia E, Durana G 2013 Sensors 13 13584

    [8]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 J. Lightwave Technol. 23 2081

    [9]

    Bian Z Y, Liang R S, Zhang Y J, Yi L X, Lai G, Zhao R T 2015 Chin. Phys. B 24 107801

    [10]

    Karimov K S, Sulaiman K, Ahmad Z, Akhmedov K M, Mateen A 2015 Chin. Phys. B 24 018801

    [11]

    Maki M C, Weese J K 2004 IEEE Aero. El. Sys. Mag. 19 8

    [12]

    Wu H J, Li S S, Lu X L, Wu Y, Rao Y J 2012 Proceedings of SPIE 8351, 3th Asia Pacific Optical Sensors Conference Sydney, Australia January 31, 2012 p835134

    [13]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 物理学报 64 054304]

    [14]

    Wang B J, Pi S H, Sun Q, Jia B 2015 Opt. Eng. 54 055104

    [15]

    Hong X, Wu J, Zuo C, Liu F, Guo H, Xu K 2011 Appl. Opt. 50 4333

    [16]

    Dong Y, Zhang H, Chen L, Bao X Y 2012 Appl. Opt. 51 1229

    [17]

    Belal M, Newson T P 2011 Opt. Lett. 36 4728

    [18]

    Culshaw B, Kersey A 2008 J. Lightwave Technol. 26 1064

    [19]

    Zhang Z, Bao X Y 2008 Opt. Express 16 10240

    [20]

    Bao X Y, Chen L 2012 Sensors 12 8601

    [21]

    Ma H Q, Zhao J L, Wu L A 2009 Chin. Phys. B 18 2801

    [22]

    Hoffman P R, Kuzyk M G 2004 J. Lightwave Technol. 22 494

    [23]

    Bian P, Wu Y, Jia B, Xiao Q 2012 Chin. J. Sci. Instrum. 33 2870 (in Chinese) [卞庞, 吴媛, 贾波, 肖倩 2012 仪器仪表学报 33 2870]

    [24]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [25]

    Li L C, Li X, Xie Z H, Liu D M 2012 Opt. Express 20 11109

    [26]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2013 Chin. Phys. B 22 074214

    [27]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1892

    [28]

    Ruan J, Zhang W G, Zhang H, Geng P C, Bai Z Y 2012 Chin. Phys. B 22 064216

    [29]

    Zhen S L, Chen J, Li H, Wang X G, Zhang B, Yu B L 2015 IEEE Photon. Tech. Lett. 27 895

    [30]

    Hong G W, Jia B, Tang H 2007 J. Lightwave Technol. 25 3057

    [31]

    Pi S H, Wang B J, Jia B, Sun Q, Xiao Q, Zhao D 2015 Opt. Eng. 54 085105

    [32]

    Xu H Y, Xu Q, Xiao Q, Jia B 2010 Acta Opt. Sin. 30 1603 (in Chinese) [许海燕, 徐锲, 肖倩, 贾波2010 光学学报 30 1603]

    [33]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1032

    [34]

    Bian P, Wu Y, Jia B, Xiao Q, Xu Q, Wu H Y 2014 Opt. Eng. 53 044111

    [35]

    Hess W 2012 Pitch Determination of Speech Signals: Algorithms and Devices (Berlin: Springer Science Business Media) p399

    [36]

    Oppenheim A V, Schafer R W 2004 IEEE Signal Proc. Mag. 21 95

    [37]

    Borghesania P, Pennacchia P, Randallb R B, Sawalhib N, Riccia R 2013 Mech. Syst. Signal Pr. 36 370

    [38]

    Wang Y, Zou N, Fu J, Liang G L 2014 Acta Phys. Sin. 63 034302 (in Chinese) [王燕, 邹男, 付进, 梁国龙 2014 物理学报 63 034302]

    [39]

    Wu H Y, Jia B, Ye J, Wang C 2007 Trans. Micro. Technol. 26 45 (in Chinese) [吴红艳, 贾波, 叶佳, 王超2007传感器与微系统 26 45]

  • [1]

    Cao Y, Pei Y W, Tong Z R 2014 Acta Phys. Sin. 63 024206 (in Chinese) [曹晔, 裴庸惟, 童峥嵘 2014 物理学报 63 024206]

    [2]

    Leung C K, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z 2015 Mater. Struct. 48 871

    [3]

    Jiang Z X, Cui B T 2015 Chin. Phys. B 24 020702

    [4]

    Zhou D P, Qin Z G, Li W H, Chen L, Bao X Y 2012 Opt. Express 20 13138

    [5]

    Xu Q, Xu H Y, Song Y H, Xiao Q 2014 Chin. J. Sci. Instrum. 35 216 (in Chinese) [徐锲, 许海燕, 宋耀华, 肖倩 2014 仪器仪表学报 35 2161]

    [6]

    Zhang J, Hoffman A, Kane A, Lewis J 2014 Proceedings of the 10th International Pipeline Conference Calgary, Alberta, Canada, September 29-October 3, 2014 p33619

    [7]

    Zubia J, Casado L, Aldabaldetreku G, Montero A, Zubia E, Durana G 2013 Sensors 13 13584

    [8]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 J. Lightwave Technol. 23 2081

    [9]

    Bian Z Y, Liang R S, Zhang Y J, Yi L X, Lai G, Zhao R T 2015 Chin. Phys. B 24 107801

    [10]

    Karimov K S, Sulaiman K, Ahmad Z, Akhmedov K M, Mateen A 2015 Chin. Phys. B 24 018801

    [11]

    Maki M C, Weese J K 2004 IEEE Aero. El. Sys. Mag. 19 8

    [12]

    Wu H J, Li S S, Lu X L, Wu Y, Rao Y J 2012 Proceedings of SPIE 8351, 3th Asia Pacific Optical Sensors Conference Sydney, Australia January 31, 2012 p835134

    [13]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 物理学报 64 054304]

    [14]

    Wang B J, Pi S H, Sun Q, Jia B 2015 Opt. Eng. 54 055104

    [15]

    Hong X, Wu J, Zuo C, Liu F, Guo H, Xu K 2011 Appl. Opt. 50 4333

    [16]

    Dong Y, Zhang H, Chen L, Bao X Y 2012 Appl. Opt. 51 1229

    [17]

    Belal M, Newson T P 2011 Opt. Lett. 36 4728

    [18]

    Culshaw B, Kersey A 2008 J. Lightwave Technol. 26 1064

    [19]

    Zhang Z, Bao X Y 2008 Opt. Express 16 10240

    [20]

    Bao X Y, Chen L 2012 Sensors 12 8601

    [21]

    Ma H Q, Zhao J L, Wu L A 2009 Chin. Phys. B 18 2801

    [22]

    Hoffman P R, Kuzyk M G 2004 J. Lightwave Technol. 22 494

    [23]

    Bian P, Wu Y, Jia B, Xiao Q 2012 Chin. J. Sci. Instrum. 33 2870 (in Chinese) [卞庞, 吴媛, 贾波, 肖倩 2012 仪器仪表学报 33 2870]

    [24]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [25]

    Li L C, Li X, Xie Z H, Liu D M 2012 Opt. Express 20 11109

    [26]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2013 Chin. Phys. B 22 074214

    [27]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1892

    [28]

    Ruan J, Zhang W G, Zhang H, Geng P C, Bai Z Y 2012 Chin. Phys. B 22 064216

    [29]

    Zhen S L, Chen J, Li H, Wang X G, Zhang B, Yu B L 2015 IEEE Photon. Tech. Lett. 27 895

    [30]

    Hong G W, Jia B, Tang H 2007 J. Lightwave Technol. 25 3057

    [31]

    Pi S H, Wang B J, Jia B, Sun Q, Xiao Q, Zhao D 2015 Opt. Eng. 54 085105

    [32]

    Xu H Y, Xu Q, Xiao Q, Jia B 2010 Acta Opt. Sin. 30 1603 (in Chinese) [许海燕, 徐锲, 肖倩, 贾波2010 光学学报 30 1603]

    [33]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1032

    [34]

    Bian P, Wu Y, Jia B, Xiao Q, Xu Q, Wu H Y 2014 Opt. Eng. 53 044111

    [35]

    Hess W 2012 Pitch Determination of Speech Signals: Algorithms and Devices (Berlin: Springer Science Business Media) p399

    [36]

    Oppenheim A V, Schafer R W 2004 IEEE Signal Proc. Mag. 21 95

    [37]

    Borghesania P, Pennacchia P, Randallb R B, Sawalhib N, Riccia R 2013 Mech. Syst. Signal Pr. 36 370

    [38]

    Wang Y, Zou N, Fu J, Liang G L 2014 Acta Phys. Sin. 63 034302 (in Chinese) [王燕, 邹男, 付进, 梁国龙 2014 物理学报 63 034302]

    [39]

    Wu H Y, Jia B, Ye J, Wang C 2007 Trans. Micro. Technol. 26 45 (in Chinese) [吴红艳, 贾波, 叶佳, 王超2007传感器与微系统 26 45]

  • [1] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [3] He Yin-Zhu, Zhao Shi-Jie, Wei Hao-Yun, Li Yan. Traceable trans-scale heterodyne interferometer with subnanometer resolution. Acta Physica Sinica, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [4] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution. Acta Physica Sinica, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [5] He Lin-Yang, Liu Jing-Hong, Li Gang. Super resolution of aerial image by means of polyphase components reconstruction. Acta Physica Sinica, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [6] Fu Dong-Zhi, Jia Jun-Liang, Zhou Ying-Nan, Chen Dong-Xu, Gao Hong, Li Fu-Li, Zhang Pei. Realisation of orbital angular momentum sorter of photons based on sagnac interferometer. Acta Physica Sinica, 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [7] Liang Mei-Yan, Zhang Cun-Lin. Improvement in the range resolution of THz radar using phase compensation algorithm. Acta Physica Sinica, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [8] Fan Wei, Gu Yu-Qiu, Zhu Bin, Shui Min, Shan Lian-Qiang, Du Sai, Xin Jian-Ting, Zhao Zong-Qing, Zhou Wei-Min, Cao Lei-Feng, Zhang Xue-Ru, Wang Yu-Xiao. Design and theoretical research of an ultrafast time-resolved velocity interferometer. Acta Physica Sinica, 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [9] Fan Hong, Zhu Yan-Chun, Wang Fang-Mei, Zhang Xu-Mei. Segmentation of breast MR images based on multiresolution level set algorithm. Acta Physica Sinica, 2014, 63(11): 118701. doi: 10.7498/aps.63.118701
    [10] Wang Yan, Zou Nan, Fu Jin, Liang Guo-Long. Estimation of single hydrophone target motion parameter based on cepstrum analysis. Acta Physica Sinica, 2014, 63(3): 034302. doi: 10.7498/aps.63.034302
    [11] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [12] Liu Ya-Wen, Chen Yi-Wang, Xu Xin, Liu Zong-Xin. Implementation and analysis of the perfectly matched layer with auxiliary differential equation for the multiresolution time-domain method. Acta Physica Sinica, 2013, 62(3): 034101. doi: 10.7498/aps.62.034101
    [13] Lou Shu-Qin, Wang Xin, Lu Wen-Liang. Design and fabrication of a novel side-leakage photonic crystal fiber and its propagation properties. Acta Physica Sinica, 2013, 62(8): 084216. doi: 10.7498/aps.62.084216
    [14] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A side-leakage photonic crystal fiber torsion sensor for measuring torsion angle and determining torsion direction simultaneously. Acta Physica Sinica, 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [15] Ma Hai-Qiang, Li Lin-Xia, Wang Su-Mei, Wu Zhang-Bin, Jiao Rong-Zhen. An all-fiber method to measure the wave-particle duality of light. Acta Physica Sinica, 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [16] Wu Guang, Zhou Chun-Yuan, Zeng He-Ping. Single-photon interference and router-control in an optic fiber Sagnac interferometer. Acta Physica Sinica, 2004, 53(3): 698-702. doi: 10.7498/aps.53.698
    [17] SHU XUE-WEN, HUANG DE-XIU, DENG GUI-HUA, SHI WEI, JIANG SHAN. THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON SAGNAC INTERFEROMETER BASED ON SI NGLE OPTICAL FIBER GRATING. Acta Physica Sinica, 2000, 49(9): 1731-1735. doi: 10.7498/aps.49.1731
    [18] ZHU DE-ZHANG, PAN HAO-CHANG, CAO JIAN-QING, ZHU FU-YING, CHEN GUO-MING, CHEN GUO-LIANG, YANG JIE, ZOU SHI-CHANG. STUDY ON LOW ENERGY ION BEAM NITRIDATION OF Si BY HIGH RESOLUTION CHANNELING-BACKSCATTERING. Acta Physica Sinica, 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
    [19] LU KUN-QUAN, CHANG LONG-CUN, ZHAO YA-QIN. THE RESOLUTION OF CRYSTAL MONOCHROMATOR FOR CONTINUOUS X-RAY SPECTRUM. Acta Physica Sinica, 1983, 32(12): 1505-1514. doi: 10.7498/aps.32.1505
    [20] NI YU-CAI, WANG BANG-YI. PRECISION MEASUREMENT OF REFRACTIVE INDEX OF AIR BY AN IMPROVED RAYLEIGH INTERFEROMETER. Acta Physica Sinica, 1977, 26(1): 90-92. doi: 10.7498/aps.26.90
Metrics
  • Abstract views:  4956
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2015
  • Accepted Date:  27 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回