Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the electro-optic modulation properties of graphene-coated hollow optical fiber

Bi Wei-Hong Wang Yuan-Yuan Fu Guang-Wei Wang Xiao-Yu Li Cai-Li

Citation:

Study on the electro-optic modulation properties of graphene-coated hollow optical fiber

Bi Wei-Hong, Wang Yuan-Yuan, Fu Guang-Wei, Wang Xiao-Yu, Li Cai-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Active manipulation of light in optical fibers has been extensively studied with great interest because of the structure simplicity, small footprint, low insertion loss and the compatibility with diverse fiber-optic systems. While graphene can be seen to exhibit a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, there is no report on the electro-absorption properties of all-fiber graphene devices. Here a novel tunable graphene-based hollow optical fiber structure is designed with graphene coated on the inner wall of the fiber central core. Evanescent field of the guided mode propagating in the hollow optical fiber interacts with a monolayer or stacked multilayer graphene, which could modulate the intensity of the propagating mode via altering the chemical potential of the graphene by an external electric field. A full vector finite element method is adopted to analyse the influences of the chemical potential, the air-hole's radius and layers of graphene on the electro-optic modulation properties of the structure. Numerical simulation results show that by adjusting the chemical potential of graphene, the phase and on-off features of the fiber can be tuned correspondingly, as well as the position, magnitude and width of the loss peak and the sub-peak. However, the air-hole's radius and layers of graphene will only affect the loss variation, the magnitude and width of the loss peak and the sub-peak, but have no influence on the on-off point and the position of the loss peak and the sub-peak. In addition, the loss variation caused by N-layer graphene is N times that of the monolayer graphene. Since it is the dielectric constant of graphene that determines the effective refractive index and the loss of the fiber, the dielectric constant is only related to its chemical potential while independent of the air-hole's radius and the layers of graphene. Finally, an optimal electro-absorptive modulator based on the penta-layer graphene-coated hollow optical fiber is proposed for its advantage of ultra-compact footprint (5 mm 125 m), ultrawide optical bandwidth (580 nm), high extinction ratio (16 dB), high modulation bandwidth (64 MHz) and low insertion loss (1.23 dB), as well as a broad operational spectrum that ranges from 1180 to 1760 nm. Our results can provide theoretical references for the design and application of graphene-based tunable photonic fiber devices.
      Corresponding author: Bi Wei-Hong, whbi@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575170, 61475133).
    [1]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [2]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [3]

    Wang L M, Monte T D 2008 Opt. Lett. 33 1078

    [4]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [5]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [6]

    Liu C, Pei L, Wu L Y, Wang Y Q, Weng S J, Yu S W 2015 Acta Phys. Sin. 64 174207 (in Chinese) [刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟 2015 物理学报 64 174207]

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Vakil A, Engheta N 2011 Science 332 1291

    [10]

    Obraztsov P A, Rybin M G, Tyurnina A V, Garnov S V, Obraztsova E D, Obraztsov A N, Svirko Y P 2011 Nano Lett. 11 1540

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [13]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [14]

    Hao R, Du W, Chen H S, Jin X F, Yang L Z, Li E P 2013 Appl. Phys. Lett. 103 061116

    [15]

    Sorianello V, Midrio M, Romagnoli M 2015 Opt. Express 23 6478

    [16]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [17]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [18]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [19]

    Lee E J, Choi S Y, Jeong H, Park N H, Yim W, Kim M H, Park J K, Son S, Bae S, Kim S J, Lee K, Ahn Y H, Ahn K J, Hong B H, Park J Y, Rotermund F, Yeom D I 2015 Nat. Commun. 6 6851

    [20]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [21]

    Capmany J, Domenech D, Muoz P 2014 Opt. Express 22 5283

    [22]

    Lee S, Park J, Jeong Y, Jung H, Oh K 2009 J. Lightwave Technol. 27 4919

    [23]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photon. 4 518

  • [1]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [2]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [3]

    Wang L M, Monte T D 2008 Opt. Lett. 33 1078

    [4]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [5]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [6]

    Liu C, Pei L, Wu L Y, Wang Y Q, Weng S J, Yu S W 2015 Acta Phys. Sin. 64 174207 (in Chinese) [刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟 2015 物理学报 64 174207]

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Vakil A, Engheta N 2011 Science 332 1291

    [10]

    Obraztsov P A, Rybin M G, Tyurnina A V, Garnov S V, Obraztsova E D, Obraztsov A N, Svirko Y P 2011 Nano Lett. 11 1540

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [13]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [14]

    Hao R, Du W, Chen H S, Jin X F, Yang L Z, Li E P 2013 Appl. Phys. Lett. 103 061116

    [15]

    Sorianello V, Midrio M, Romagnoli M 2015 Opt. Express 23 6478

    [16]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [17]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [18]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [19]

    Lee E J, Choi S Y, Jeong H, Park N H, Yim W, Kim M H, Park J K, Son S, Bae S, Kim S J, Lee K, Ahn Y H, Ahn K J, Hong B H, Park J Y, Rotermund F, Yeom D I 2015 Nat. Commun. 6 6851

    [20]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [21]

    Capmany J, Domenech D, Muoz P 2014 Opt. Express 22 5283

    [22]

    Lee S, Park J, Jeong Y, Jung H, Oh K 2009 J. Lightwave Technol. 27 4919

    [23]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photon. 4 518

  • [1] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [3] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [4] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [10] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [11] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [12] Zhou Li, Wei Yuan, Huang Zhi-Xiang, Wu Xian-Liang. Study on the electromagnetic properties of thin-film solar cell grown with graphene using FDFD method. Acta Physica Sinica, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [13] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [14] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] Chen Yan, Zhou Gui-Yao, Xia Chang-Ming, Hou Zhi-Yun, Liu Hong-Zhan, Wang Chao. Analysis of a novel dual-mode large-mode-area micro-structured fiber. Acta Physica Sinica, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [16] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [17] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [19] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [20] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Probing the spectrum evolution of femtosecond pulse filament in argon gas with a hollow fiber. Acta Physica Sinica, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
Metrics
  • Abstract views:  5363
  • PDF Downloads:  379
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2015
  • Accepted Date:  04 December 2015
  • Published Online:  05 February 2016

/

返回文章
返回