Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detail investigation of the inclined pressure structure and gravity darkening in critical rotating star Achernar

Tai Li-Ting Song Han-Feng Wang Jiang-Tao

Citation:

Detail investigation of the inclined pressure structure and gravity darkening in critical rotating star Achernar

Tai Li-Ting, Song Han-Feng, Wang Jiang-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Rotation and tide are two important factors that have very important impacts on the stellar structure and evolution. Based on the observational data of Achernar, we have derived the inclined pressure structure in a single rotating star or as a member in the binaries. We have given the distributions of the physical quantities on the isobaric surface and these distributions are derived from the Legendre series of expansions. We have also found the relationship between all levels of perturbation potential functions (including rotational and tidal distortions) and the distributions of density and pressure under the condition of inclined pressure structure. In particular, the gravitational darkening with the models including the effects of rotation and tide is investigated. We have found that the critical ratio of equatorial radius to the polar radius is consistent with the observations in rotating binaries better than that in single rotating model. The reason is that the tidal force can make the polar radius shortened because the tidal force exerts an inward force to the two polar points. However, the theoretical angular velocity in binaries is smaller than that observed. It is also shown that the positive shear enhances the centrifugal force and decreases the mean effective gravitational acceleration and effective temperatures whereas the negative shear plays a role to strengthen the effective gravitational acceleration. Moreover, the solid body rotation has not been supported inside Achernar because magnetic fields have not been detected through observations. Furthermore, the theoretical angular velocity in rigid rotation is higher than the angular velocity observed. Achernar has a periodic variation of light curves due to mass outburst, which also supports differential rotation. A positive shear indicates that the mass in accretion disks is falling to Achernar and the Achernar is spun up to critical rotation according to current observations. By comparing the theoretical results with observations, it can be seen that when the theoretical spin angular velocity of Achernar is 4.65 10-5 s-1 and the positive shears / s are 0.7851, the temperature of the polar points is 16041 K and that of equatorial sphere is 12073 K. Relative errors between the theoretical values and observations are less than 3% and are listed in the text. This model is the best and is the most possible one for Achernar.
      Corresponding author: Song Han-Feng, sci.hfsong@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11463002), the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Science (Grant No. OP201405), and the Graduate Innovation Fund in Guizhou University, China (Grant No. 2015055).
    [1]

    Huang R Q, Yu K N 1998 Stellar Astrophysics (New York: Springer Verlag) p313

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq. 4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wen D H, Zhou Y 2013 Chin. Phys. B 22 080401

    [10]

    Zhang J, Wang B, Zhang B, Han Z W 2012 Chin. Phys. Lett. 29 019701

    [11]

    von Zeipel H 1924 Mon. Not. Roy. Astron. Soc. 84 665

    [12]

    de Souza D A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F 2003 Astron. Astrophys. 407 L47

    [13]

    Naz Y 2009 Astron. Astrophys. 506 1055

    [14]

    Jackson S, MacGregor K B, Skumanich A 2004 Astrophys. J. 606 1196

    [15]

    Maeder A, Stahler S 2009 Physics, Formation and Evolution of Rotating Stars (Germany: Springer-Verlag) pp22-24

    [16]

    Kervella P, Domiciano de Souza A D, Bendjoya P 2008 Astron. Astrophys. 484 13

    [17]

    Zorec J, Domiciano de Souza A D, Frmat Y, Vakili F 2005 Semaine de l'Astrophysique Francaise Strasbourg, France, June 27-July 1, 2005 p363

    [18]

    Zhan Q, Song H F, Tai L T,Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [19]

    Zahn J P 2010 Astron. Astrophys. 517 A7

    [20]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [21]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [22]

    Song H F, Zhong Z, Lu Y 2009 Astron. Astrophys. 504 161

    [23]

    Song H F, Lu Y, Wang J Z 2011 Publ. Astron. Soc. Jap. 63 835

    [24]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrm S, Granada A 2013 Astron. Astrophys. 556 A100

    [25]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [26]

    Zhou K, Yang Z Y, Zou D C, Yue R H 2012 Chin. Phys. B 21 020401

    [27]

    Maeder A 1999 Astron. Astrophys. 347 185

    [28]

    Espinosa Lara F, Rieutord M 2011 Astron. Astrophys. 533 A43

    [29]

    Claret A 2012 Astron. Astrophys. 538 A3

    [30]

    de Souza D A, Kervella P, Moser Faes D, Dalla Vedova G, Mrand A, Le Bouquin J B, Espinosa Lara F, Rieutord M, Bendjoya P, Carciofi A C, Hadjara M, Millour F, Vakili F 2014 Astron. Astrophys. 569 A10

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [32]

    Goss K J F, Karoff C, Chaplin W J, Elsworth Y, Stevens I R 2011 Mon. Not. Roy. Astron. Soc. 411 162

  • [1]

    Huang R Q, Yu K N 1998 Stellar Astrophysics (New York: Springer Verlag) p313

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq. 4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wen D H, Zhou Y 2013 Chin. Phys. B 22 080401

    [10]

    Zhang J, Wang B, Zhang B, Han Z W 2012 Chin. Phys. Lett. 29 019701

    [11]

    von Zeipel H 1924 Mon. Not. Roy. Astron. Soc. 84 665

    [12]

    de Souza D A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F 2003 Astron. Astrophys. 407 L47

    [13]

    Naz Y 2009 Astron. Astrophys. 506 1055

    [14]

    Jackson S, MacGregor K B, Skumanich A 2004 Astrophys. J. 606 1196

    [15]

    Maeder A, Stahler S 2009 Physics, Formation and Evolution of Rotating Stars (Germany: Springer-Verlag) pp22-24

    [16]

    Kervella P, Domiciano de Souza A D, Bendjoya P 2008 Astron. Astrophys. 484 13

    [17]

    Zorec J, Domiciano de Souza A D, Frmat Y, Vakili F 2005 Semaine de l'Astrophysique Francaise Strasbourg, France, June 27-July 1, 2005 p363

    [18]

    Zhan Q, Song H F, Tai L T,Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [19]

    Zahn J P 2010 Astron. Astrophys. 517 A7

    [20]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [21]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [22]

    Song H F, Zhong Z, Lu Y 2009 Astron. Astrophys. 504 161

    [23]

    Song H F, Lu Y, Wang J Z 2011 Publ. Astron. Soc. Jap. 63 835

    [24]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrm S, Granada A 2013 Astron. Astrophys. 556 A100

    [25]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [26]

    Zhou K, Yang Z Y, Zou D C, Yue R H 2012 Chin. Phys. B 21 020401

    [27]

    Maeder A 1999 Astron. Astrophys. 347 185

    [28]

    Espinosa Lara F, Rieutord M 2011 Astron. Astrophys. 533 A43

    [29]

    Claret A 2012 Astron. Astrophys. 538 A3

    [30]

    de Souza D A, Kervella P, Moser Faes D, Dalla Vedova G, Mrand A, Le Bouquin J B, Espinosa Lara F, Rieutord M, Bendjoya P, Carciofi A C, Hadjara M, Millour F, Vakili F 2014 Astron. Astrophys. 569 A10

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [32]

    Goss K J F, Karoff C, Chaplin W J, Elsworth Y, Stevens I R 2011 Mon. Not. Roy. Astron. Soc. 411 162

  • [1] Diao Bin, Xu Yan, Huang Xiu-Lin, Wang Yi-Bo. Study of tidal deformabilities of neutron stars using relativistic mean field theory containing δ mesons. Acta Physica Sinica, 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [2] Zhao Shi-Yi, Liu Cheng-Zhi, Huang Xiu-Lin, Wang Yi-Bo, Xu Yan. Effects of strong magnetic field on moment of inertia and surface gravitational redshift in neutron star. Acta Physica Sinica, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [3] Peng Wei-Guo, Song Han-Feng, Zhan Qiong, Wu Xing-Hua, Jing Jiang-Hong. Formation and internal nucleosynthesis in massive rotating Wolf-Rayet stars. Acta Physica Sinica, 2019, 68(21): 219701. doi: 10.7498/aps.68.20191040
    [4] Li Zhi, Song Han-Feng, Peng Wei-Guo, Wang Jing-Zhou, Zhan Qiong. Physical process of tidal synchronization and orbital circularization in rotating binaries. Acta Physica Sinica, 2018, 67(19): 199701. doi: 10.7498/aps.67.20181056
    [5] Zhan Qiong, Song Han-Feng, Tai Li-Ting, Wang Jiang-Tao. Theoretical model of the rotationally and tidally distorted binaries. Acta Physica Sinica, 2015, 64(8): 089701. doi: 10.7498/aps.64.089701
    [6] Song Han-Feng, Wang Jing-Zhou, Li Yun. The effect of the radiative pressure on the potential function in asynchronous rotational binary. Acta Physica Sinica, 2013, 62(5): 059701. doi: 10.7498/aps.62.059701
    [7] Fu Hong-Yang, Wen De-Hua, Yan Jing. Properties of rapidly rotating hybrid stars with non-Newtonian gravity. Acta Physica Sinica, 2012, 61(20): 209701. doi: 10.7498/aps.61.209701
    [8] Gong Yan-Jun, Wu Zhen-Sen. Analytical model of range-Doppler image of rotating cylinders and cones. Acta Physica Sinica, 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [9] Shi Zhu-Yi, Zhang Chun-Mei, Tong Hong, Zhao Xing-Zhi, Ni Shao-Yong. Evolution from vibration to rotation of 102Ru nucleus discussed within microscopic theory. Acta Physica Sinica, 2008, 57(3): 1564-1568. doi: 10.7498/aps.57.1564
    [10] Yu Chun-Ri, Wang Rong-Kai, Yang Xiang-Dong, Yin Xun-Chang. The rotational excitation partial cross sections for the He-HI collisions. Acta Physica Sinica, 2008, 57(5): 2906-2912. doi: 10.7498/aps.57.2906
    [11] Wang Hua, Liu Shi-Lin, Liu Jie, Wang Feng-Yan, Jiang Bo, Yang Xue-Ming. Rovibronic spectrum of N2O+ ion at the A2Σ+ state. Acta Physica Sinica, 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [12] Zhang Guo-Ying, Zhang Xue-Long, Cheng Yong, Xue Liu-Ping, Han Kui. Investigation on the diamagnetic Faraday rotation spectra in Pr-substituted yttrium iron garnet. Acta Physica Sinica, 2005, 54(1): 407-410. doi: 10.7498/aps.54.407
    [13] FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [14] MENG JIE. VARIATION OF PAIR CORRELATION IN FAST ROTATING NUCLEI. Acta Physica Sinica, 1993, 42(3): 368-372. doi: 10.7498/aps.42.368
    [15] LU QING-ZHENG, DING CHUAN-FAN, GAO JIAN-MI, KONG FAN-AO. A ROTATIONAL ANALYSIS OF UV MULTIPHOTON IONIZATION SPECTRUM OF SiH4. Acta Physica Sinica, 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [16] ZHANG ZHI-XIANG. THE TRAJECTORY OF THE EXTRAORDINARY RAY AS THE CRYSTAL ROTATES. Acta Physica Sinica, 1980, 29(11): 1483-1489. doi: 10.7498/aps.29.1483
    [17] ZHU SI-CHANG. GRAVITATIONAL MASS DEFECT AND ROTATIONAL MASS EFFECT FOR A ROTARY SOLID SPHERE IN GENERAL THEORY OF RELATIVITY. Acta Physica Sinica, 1979, 28(6): 894-900. doi: 10.7498/aps.28.894
    [18] REN GENG-WEI. CLASSIFICATION OF WAVE FUNCTIONS IN A MANY NUCLEON SYSTEM BY A ROTATION GROUP METHOD. Acta Physica Sinica, 1974, 23(3): 13-25. doi: 10.7498/aps.23.13
    [19] TSENG CHIN-YUEN, CHANG-CHING-YING, YANG LI-MING. ESTIMATION OF THE NUCLEAR MOMENT OF INERTIA AND THE gR FACTOR. Acta Physica Sinica, 1959, 15(10): 565-574. doi: 10.7498/aps.15.565
    [20] SHEN HUNG-TAO, YEUAN TU-NAN, LEE YANG-KOU. ROTATIONAL SPECTRUM OF F19. Acta Physica Sinica, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
Metrics
  • Abstract views:  4964
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2015
  • Accepted Date:  06 December 2015
  • Published Online:  05 February 2016

/

返回文章
返回