Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three wire toroidal magnetic guide based on the vertical leads and ac current modulation

Cheng Jun Zhang Jing-Fang Xu Xin-Ping Jiang Xiao-Jun Li Xiao-Lin Zhang Hai-Chao Wang Yu-Zhu

Citation:

Three wire toroidal magnetic guide based on the vertical leads and ac current modulation

Cheng Jun, Zhang Jing-Fang, Xu Xin-Ping, Jiang Xiao-Jun, Li Xiao-Lin, Zhang Hai-Chao, Wang Yu-Zhu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A new scheme to create a closed toroidal magnetic waveguide for deBroglie wave on a single layer atom chip is proposed and there is no zero magnetic field along the guide center. The guide is a two-dimensional magnetic trap for trapping weak-field seeking states of atoms with a magnetic dipole moment. The designed wire structure on the atom chip consists of three concentric and isometric ring wires, and six vertical current leads of the three ring wires. By using the through silicon via technology, the current leads can be made perpendicular to the atom chip surface instead of being generally arranged side by side on the chip surface. Compared with the general wiring way, the vertical lead way has two advantages. One is that each ring wire gap caused by the current leads is substantially smaller than the distance between the ring wires, which permits the generation of a closed toroidal magnetic guide near the atom chip surface when dc currents are supplied to the three ring wires. The other is that the distance between two leads of each ring wire is considerably reduced, resulting in the fact that the magnetic perturbation of the leads to the whole toroidal magnetic guide is negligible. We numerically calculate the magnetic field distribution generated by our wire layout when dc currents are applied, and it is shown that a closed and tight toroidal magnetic guide is formed near the atom chip surface. However, there are zero magnetic fields existing along the center of the toroidal guide, which leads to Majorana spin flips from trapped magnetic substate to an un-trapped magnetic sub-state. According to the time-orbiting-potential principle, we propose an ac current modulation method, which is simple and stable, to reduce the atom losses and suppress the atomic decoherence in the toroidal magnetic guide. We deduce the ac current expressions for the case of three isometric infinite straight wires and apply the ac modulation current expressions directly to our three ring wire structure. The numerical calculation results show that the closed toroidal guide does no longer have zero magnetic fields near the magnetic field minimum, and that the magnetic field fluctuation of the guide is smaller. Based on the vertical leads and ac current modulation, the closed toroidal wave guide with no zero magnetic field along the guide center can be generated near the atom chip surface. This scheme has important scientific significance and engineering value for developing the cold atomic chip gyroscope.
    [1]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518

    [2]

    Gupta S, Dieckmann K, Hadzibabic Z, Pritchard D E 2002 Phys. Rev. Lett. 89 140401

    [3]

    Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Bord C J, Landragin A, Bouyer P 2006 Phys. Rev. Lett. 97 010402

    [4]

    Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y, Hu Z K 2015 Chin.Phys.B 24 050401

    [5]

    Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405

    [6]

    Snadden M J M J M, Bouyer P, Haritos K G and Kasevich M A 1998 Phys. Rev. Lett. 81 971

    [7]

    Tang B, Zhang B, Zhou L, Wang J, Zhan M 2015 Eur. Phys. J. D 69 233

    [8]

    Barrett B, Geiger R, Dutta I, Meunier M, Canuel B, Gauguet A, Bouyer P, Landragin A 2014 C.R.Physique 15 875

    [9]

    Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201

    [10]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474

    [11]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [12]

    Wang J 2015 Chin. Phys. B 24 053702

    [13]

    Yan H 2012 Appl. Phys. Lett. 101 194102

    [14]

    Richmond J A, Cantwell B P, Chormaic S N, Lau D C, Akulshin A M, Opat G I 2002 Phys. Rev. A 65 033422

    [15]

    Vangeleyn M, Garraway B M, Perrin H, Arnold A S 2014 J. Phys. B: At., Mol. Opt. Phys. 47 071001

    [16]

    Sauer J A, Barrett M D, Chapman M S 2001 Phys. Rev. Lett. 87 270401

    [17]

    Deissler B, Hughes K J, Burke J H T, Sackett C A 2008 Phys. Rev. A 77 031604

    [18]

    Folman R, Kruger P, Cassettari D, Hessmo B, Maier T, Schmiedmayer J 2000 Phys. Rev. Lett. 84 4749

    [19]

    Lovecchio C, Cherukattil S, Cilenti B, Herrera I, Cataliotti F S, Montangero S, Calarco T, Caruso F 2015 New J. Phys. 17 093024

    [20]

    Crookston M B, Baker P M, Robinson M P 2005 J. Phys. B: At., Mol. Opt. Phys. 38 3289

    [21]

    Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R, Miller S M 2009 Phys. Rev. A 80 063615

    [22]

    Jiang X J, Li X L, Xu X P, Zhang H C, Wang Y Z 2015 Chin. Phys. Lett. 32 020301

    [23]

    Petrich W, Anderson M H, Ensher J R, Cornell E A 1995 Phys. Rev. Lett. 74 3352

    [24]

    Minogin V G, Richmond J A, Opat G I 1998 Phys. Rev. A 58 3138

    [25]

    Feenstra L 2004 Gen. Relat. Gravit. 36 2317

    [26]

    Katti G, Stucchi M, De Meyer K, Dehaene W 2010 IEEE T ELECTR INSUL 57 256

    [27]

    Arnold A S 2004 J. Phys. B: At., Mol. Opt. Phys. 37 L29

  • [1]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518

    [2]

    Gupta S, Dieckmann K, Hadzibabic Z, Pritchard D E 2002 Phys. Rev. Lett. 89 140401

    [3]

    Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Bord C J, Landragin A, Bouyer P 2006 Phys. Rev. Lett. 97 010402

    [4]

    Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y, Hu Z K 2015 Chin.Phys.B 24 050401

    [5]

    Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405

    [6]

    Snadden M J M J M, Bouyer P, Haritos K G and Kasevich M A 1998 Phys. Rev. Lett. 81 971

    [7]

    Tang B, Zhang B, Zhou L, Wang J, Zhan M 2015 Eur. Phys. J. D 69 233

    [8]

    Barrett B, Geiger R, Dutta I, Meunier M, Canuel B, Gauguet A, Bouyer P, Landragin A 2014 C.R.Physique 15 875

    [9]

    Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201

    [10]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474

    [11]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [12]

    Wang J 2015 Chin. Phys. B 24 053702

    [13]

    Yan H 2012 Appl. Phys. Lett. 101 194102

    [14]

    Richmond J A, Cantwell B P, Chormaic S N, Lau D C, Akulshin A M, Opat G I 2002 Phys. Rev. A 65 033422

    [15]

    Vangeleyn M, Garraway B M, Perrin H, Arnold A S 2014 J. Phys. B: At., Mol. Opt. Phys. 47 071001

    [16]

    Sauer J A, Barrett M D, Chapman M S 2001 Phys. Rev. Lett. 87 270401

    [17]

    Deissler B, Hughes K J, Burke J H T, Sackett C A 2008 Phys. Rev. A 77 031604

    [18]

    Folman R, Kruger P, Cassettari D, Hessmo B, Maier T, Schmiedmayer J 2000 Phys. Rev. Lett. 84 4749

    [19]

    Lovecchio C, Cherukattil S, Cilenti B, Herrera I, Cataliotti F S, Montangero S, Calarco T, Caruso F 2015 New J. Phys. 17 093024

    [20]

    Crookston M B, Baker P M, Robinson M P 2005 J. Phys. B: At., Mol. Opt. Phys. 38 3289

    [21]

    Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R, Miller S M 2009 Phys. Rev. A 80 063615

    [22]

    Jiang X J, Li X L, Xu X P, Zhang H C, Wang Y Z 2015 Chin. Phys. Lett. 32 020301

    [23]

    Petrich W, Anderson M H, Ensher J R, Cornell E A 1995 Phys. Rev. Lett. 74 3352

    [24]

    Minogin V G, Richmond J A, Opat G I 1998 Phys. Rev. A 58 3138

    [25]

    Feenstra L 2004 Gen. Relat. Gravit. 36 2317

    [26]

    Katti G, Stucchi M, De Meyer K, Dehaene W 2010 IEEE T ELECTR INSUL 57 256

    [27]

    Arnold A S 2004 J. Phys. B: At., Mol. Opt. Phys. 37 L29

  • [1] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [2] Wang Yu-Hao, Wu Bao-Jian, Guo Biao, Wen Feng, Qiu Kun. Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [3] Ling Yun-Long, Wang Chuan, Zhang Hai-Chao. Three wires ring magnetic guide based on Archimedean spirals. Acta Physica Sinica, 2020, 69(10): 100301. doi: 10.7498/aps.69.20200284
    [4] Liu Dan, Hu Sen. Two-dimensional silicon annular photonic crystals for realizing polarization-independent unidirectional transmission. Acta Physica Sinica, 2019, 68(2): 024206. doi: 10.7498/aps.68.20181397
    [5] Shen Xiao, Zou Hui, Zheng Rui-Lin, Zheng Jia-Jin, Wei Wei. Progress in gain-guided and index-antiguided large mode area fiber laser pump technology. Acta Physica Sinica, 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [6] Dong Gang, Liu Dang, Shi Tao, Yang Yin-Tang. Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone. Acta Physica Sinica, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [7] Dong Gang, Wu Wen-Shan, Yang Yin-Tang. Stack-through silicon via dynamic power consumption optimization in three-dimensional integrated circuit. Acta Physica Sinica, 2015, 64(2): 026601. doi: 10.7498/aps.64.026601
    [8] Qian Li-Bo, Zhu Zhang-Ming, Yang Yin-Tang. Through-silicon-via-aware interconnect prediction model for 3D integrated circuirt. Acta Physica Sinica, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [9] Yang Chun-Yun, Xu Xu-Ming, Ye Tao, Miao Lu-Ping. The modulation of a novel photonic crystalring resonator filter. Acta Physica Sinica, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [10] Zhu Zhang-Ming, Zuo Ping, Yang Yin-Tang. An analytical thermal model for 3D integrated circuit considering through silicon via. Acta Physica Sinica, 2011, 60(11): 118001. doi: 10.7498/aps.60.118001
    [11] Lu Yu-Dong, He Xiao-Qi, En Yun-Fei, Wang Xin, Zhuang Zhi-Qiang. Directional diffusion of atoms in metal strips/bump interconnects of flip chip. Acta Physica Sinica, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [12] Liu Yue, Zhang Wei, Feng Xue, Liu Xiao-Ming. Experimental investigation on chaotic behaviors in loss-modulated erbium-doped fiber-ring lasers. Acta Physica Sinica, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [13] Shi Tao, Yan Hui, Yang Guo-Qing, Wang Jin, Zhan Ming-Sheng. An application of digital signals in an atom Chip. Acta Physica Sinica, 2009, 58(3): 1586-1589. doi: 10.7498/aps.58.1586
    [14] Fang Zhen-Qian, Hu Ming, Zhang Wei, Zhang Xu-Rui. Micro-Raman spectroscopic investigation of the thermal conductivity of oxidized meso-porous silicon. Acta Physica Sinica, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [15] Zhang Peng-Fei, Xu Xin-Ping, Zhang Hai-Chao, Zhou Shan-Yu, Wang Yu-Zhu. UV light-induced atom desorption for magnetic trap in single vacuum chamber. Acta Physica Sinica, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [16] Ji Xian-Ming, Lu Jun-Fa, Mu Ren-Wang, Yin Jian-Ping. A novel all-optical surface atomic (molecular) funnel. Acta Physica Sinica, 2007, 56(4): 2061-2066. doi: 10.7498/aps.56.2061
    [17] Li Xiao-Lin, Ke Min, Yan Bo, Tang Jiu-Yao, Wang Yu-Zhu. A Z-trap in an atom chip for trapping neutral 87Rb atoms. Acta Physica Sinica, 2007, 56(11): 6367-6372. doi: 10.7498/aps.56.6367
    [18] WANG LIN, YU JIN-LONG, MA XIAO-HONG, YANG EN-ZE, ZHANG YI-MO, CHEN CAL-HE, HUANG CHAO, LI SHI-CHEN. 1.4—6 GHz ERBIUM DOPED FIBER LASER USING RATIONAL HARMONIC MODE-LOCKING TECHNIQUE. Acta Physica Sinica, 1999, 48(5): 876-881. doi: 10.7498/aps.48.876
    [19] TANG MENG-XI, LI FANG-YU. MODULATION ON ELECTROMAGNETIC WAVES IN A CIRCULAR WAVEGUIDE BY HIGH FREQUENCY GRAVITATIONAL WAVES. Acta Physica Sinica, 1997, 46(2): 238-248. doi: 10.7498/aps.46.238
    [20] LIAO SHI-QIANG. PHASE MODULATION IN ATOMIC RESONANCE. Acta Physica Sinica, 1979, 28(5): 124-128. doi: 10.7498/aps.28.124
Metrics
  • Abstract views:  4651
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2015
  • Accepted Date:  06 January 2016
  • Published Online:  05 March 2016

/

返回文章
返回