Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the virtual source calibration technology based on the volume of radioactive gas source

Tian Zi-Ning Chen Wei Han Bin Tian Yan-Jie Liu Wen-Biao Feng Tian-Cheng Ouyang Xiao-Ping

Citation:

Study on the virtual source calibration technology based on the volume of radioactive gas source

Tian Zi-Ning, Chen Wei, Han Bin, Tian Yan-Jie, Liu Wen-Biao, Feng Tian-Cheng, Ouyang Xiao-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The calibration methods for the radioactive Kr and Xe gases produce the key data for the judgment of nuclear fission reaction, whose accurate measurement has always been a difficult problem in operation for a long time. In order to obtain the accuracy, it is very important to calibrate the efficiencies of these gas sources, especially for proficiency test exercise of the laboratory, to analyze the CTBT samples of radioactive xenon, which are used to judge the nuclear test of the country and the measurement system. The relative measurement method has not realized in the experimental calibration, and the Monte Carlo method has large uncertainty also. Therefore, a new measurement method and experimental technology is needed. In order to avoid the above shortcomings, we need to develop a source-less efficient calibration method based on the virtual point source (VPS). In the past, it was suggested that for point sources placed on the symmetry axis, a Ge(Li) or an HPGe cylindrical detector can be changed to an virtual point detector (VPD), where all -ray interactions are considered to occur. This is not a real physical model but only a mathematical description. Aiming at the VPD, we put forward an innovative approach and define the concept of VPS. But, the concept is introduced in a volume source. In this concept, it is assumed that the total photons emission has occurred in a distance within the source described, and it is from the whole source to an imaginary point. If there is really a point located on the symmetry axis of the detector, whose efficiency is similar to that of the whole real volume source, the geometrical considerations used in calibrations of the source will be much simpler. The calibration process of the VPS is: firstly, a standard point source is placed at different position on the symmetry axis to obtain its full-energy peak efficiency. Secondly, the relationship between the height and the efficiency can be established. The position of the VPS can be deduced according to the full-energy peak efficiency of the volume source. Finally, a standard point source, instead of a volume source, is placed at the virtual point position to finish the efficiency calibration work. In this study, the LabSOCS software is used to simulate the detection efficiencies including different volumes of gas source and point source at different points on the symmetry axis. According to the calculated data, a function relationship between the volume of gas source and the virtual point source position is established. It has been proved theoretically that the volume of gas source and the virtual point location have a good linear relationship. This provides a new way in theory to solve the virtual source calibration technology. The VPS efficiency calibration technology is very important in the field of verification of nuclear test-ban, nuclear emergency measurement and environmental radioactivity measurement.
      Corresponding author: Tian Zi-Ning, tzn1019@126.com
    • Funds: Project supported by the Natinal Natural Science Foundation of China (Grant No: 11405134).
    [1]

    Xiang Y C, Gong J, Li W, Bian Z S, Hao F H, Wang H X, Wang Q, Xiong Z H 2008 Acta Phys. Sin. 57 784 (in Chinese) [向永春, 龚建, 李伟, 卞直上, 郝樊华, 王红侠, 王茜, 熊宗华 2008 物理学报 57 784]

    [2]

    Schulze J, Auer M, Werzi R 2000 Appl. Radiat. Isot. 53 23

    [3]

    Zhang W, Mekarski P, Ungar K 2010 Appl. Radiat. Isot. 68 2377

    [4]

    Petit G L, Jutier C, Gross P, Greiner V 2006 Appl. Radiat. Isot. 64 1307

    [5]

    Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902 (in Chinese) [田自宁, 欧阳晓平, 曾鸣, 成智威 2013 物理学报 62 162902]

    [6]

    Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521

    [7]

    Presler O, Peled O, German U, Leichter Y, Alfassi Z B 2002 Nucl. Instr. Meth. Phys. Res. A 484 444

    [8]

    Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213

    [9]

    Boson J, gren Gran, Johansson L 2008 Nucl. Instr. Meth. Phys. Res. A 587 304

    [10]

    Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atmoic Energy Sci. Technol. 47 1411 (in Chinese) [田自宁, 欧阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411]

    [11]

    Fontaine J P, Pointurier F, Blanchard X, Taffary T 2004 J. Environ. Radioact. 72 129

    [12]

    Wang L, Jin Y J, Fan R Y, Ouyang X P, L F X, Zhang Z B, Pan H B, Liu L Y, Bu R A 2008 Chin. Phys. B 17 3644

    [13]

    Jia P X, Zhang F, Yan B, Bao S L 2010 Chin. Phys. B 19 087802

    [14]

    Han H T, Wang Q S, Xia L B, Guan X Y, Zhang Z C 2009 Chin. Phys. B 18 4777

    [15]

    Tian Z N, Ouyang X P, Huang X L, Zhou C Y, Zhang Y, Shen M Q, Yang X Y 2011 Nucl. Sci. Tech. 34 832 (in Chinese) [田自宁, 欧阳晓平, 黄雄亮, 周崇阳, 张洋, 申茂泉, 杨晓燕 2011 核技术 34 832]

  • [1]

    Xiang Y C, Gong J, Li W, Bian Z S, Hao F H, Wang H X, Wang Q, Xiong Z H 2008 Acta Phys. Sin. 57 784 (in Chinese) [向永春, 龚建, 李伟, 卞直上, 郝樊华, 王红侠, 王茜, 熊宗华 2008 物理学报 57 784]

    [2]

    Schulze J, Auer M, Werzi R 2000 Appl. Radiat. Isot. 53 23

    [3]

    Zhang W, Mekarski P, Ungar K 2010 Appl. Radiat. Isot. 68 2377

    [4]

    Petit G L, Jutier C, Gross P, Greiner V 2006 Appl. Radiat. Isot. 64 1307

    [5]

    Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902 (in Chinese) [田自宁, 欧阳晓平, 曾鸣, 成智威 2013 物理学报 62 162902]

    [6]

    Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521

    [7]

    Presler O, Peled O, German U, Leichter Y, Alfassi Z B 2002 Nucl. Instr. Meth. Phys. Res. A 484 444

    [8]

    Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213

    [9]

    Boson J, gren Gran, Johansson L 2008 Nucl. Instr. Meth. Phys. Res. A 587 304

    [10]

    Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atmoic Energy Sci. Technol. 47 1411 (in Chinese) [田自宁, 欧阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411]

    [11]

    Fontaine J P, Pointurier F, Blanchard X, Taffary T 2004 J. Environ. Radioact. 72 129

    [12]

    Wang L, Jin Y J, Fan R Y, Ouyang X P, L F X, Zhang Z B, Pan H B, Liu L Y, Bu R A 2008 Chin. Phys. B 17 3644

    [13]

    Jia P X, Zhang F, Yan B, Bao S L 2010 Chin. Phys. B 19 087802

    [14]

    Han H T, Wang Q S, Xia L B, Guan X Y, Zhang Z C 2009 Chin. Phys. B 18 4777

    [15]

    Tian Z N, Ouyang X P, Huang X L, Zhou C Y, Zhang Y, Shen M Q, Yang X Y 2011 Nucl. Sci. Tech. 34 832 (in Chinese) [田自宁, 欧阳晓平, 黄雄亮, 周崇阳, 张洋, 申茂泉, 杨晓燕 2011 核技术 34 832]

Metrics
  • Abstract views:  5169
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2015
  • Accepted Date:  10 November 2015
  • Published Online:  05 March 2016

/

返回文章
返回