Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on bending losses of few-mode optical fibers

Zheng Xing-Juan Ren Guo-Bin Huang Lin Zheng He-Ling

Citation:

Study on bending losses of few-mode optical fibers

Zheng Xing-Juan, Ren Guo-Bin, Huang Lin, Zheng He-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rapid increase of the capacity of optical fiber transmission system, the mode division multiplexing (MDM) transmission system using few-mode fibers (FMFs) (which provides the multi-channel multiplexing, high efficiency of frequency spectrum, and low nonlinear effects) becomes a research focus to upgrade the capacity of the optical communication. In this paper, an analytical expression of bending loss for each high-order mode of parabolic-index FMFs is deduced based on the perturbation theory and verified by finite element method. Based on this expression, the influence of four key structure parameters of trench-assisted parabolic-index FMFs: i.e. the radius of fiber core, the distance between core and trench, the width of trench, and the refractive index difference of trench, on the bending loss performance are discussed in detail. It is found that, firstly, the sensitivity of the bending loss increases with the increase of mode order of FMFs. Secondly, the smaller the core radius, the smaller the bending loss of each mode-order is, since small core radius leads to a smaller effective mode area, which is beneficial for saving power leakage. Additionally, the effective mode area of LP02 mode is lower than that of LP21 mode, while the bending loss of LP02 mode is higher than that of LP21 mode, this observation is different from other mode-orders. Thirdly, an optimized distance between trench and core for each high-order mode is also investigated for obtaining minimum bending loss, which plays an important role in controlling the bending performance of FMFs. So the higher the mode-order, the smaller the optimized distance between core and trench is, and this observation could be used to optimize the bending loss of the fiber. With the increase of the distance between the core and trench, the effective mode area of high-order mode increases quickly at first, then it is approximately unaltered. The distance between the core and trench is a key factor that influences both the bending loss and the effective mode area of each mode. Finally, the bending loss of each mode decreases with the increase of the width of trench around the fiber core or the refractive index difference of trench. These results are helpful for understanding the mechanism of bending loss for FMFs and are of significance for designing and manufacturing of few-mode bend-insensitive fibers, especially for the optimization of the bending loss of specific high-order mode.
      Corresponding author: Ren Guo-Bin, gbren@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178008), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2011RC050).
    [1]

    Desurvire E B 2006 J. Lightwave Technol. 24 4697

    [2]

    Morioka T 2009 Proceedings of the 14th Opto-Electronics and Communications Conference Hong Kong, China, July 13-17, 2009 p1

    [3]

    Yan L S, Liu X, Shieh W 2011 IEEE Photon. J. 3 325

    [4]

    Essiambre R J, Kramer G, Winzer P, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662

    [5]

    Xie Y W, Fu S N, Zhang H L, Tang M, Shen P, Liu D M 2013 Acta Opt. Sin. 9 09060101 (in Chinese) [谢意维, 付松年, 张海亮, 唐明, 沈平, 刘德明 2013 光学学报 9 09060101]

    [6]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [7]

    Marcuse D 1976 J. Opt. Soc. Am. 66 311

    [8]

    Watekar P R, Ju S, Yoon Y S, Lee Y S, Han W T 2008 Opt. Express 16 13545

    [9]

    Watekar P R, Ju S, Htein L, Han W T 2010 Opt. Express 18 13761

    [10]

    Goto Y, Nakajima K, Kurashima T 2012 Proceeding of the 17th Opto-electronics and Communications Conference (OECC) BuSan, July 2-6, 2012 p813

    [11]

    Lin Z 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [林桢2007博士学位论文 (北京:北京交通大学)]

    [12]

    Li H S, Ren G B, Gao Y X, Lian Y D, Cao M, Jian S S 2015 IEEE Photon. Technol. Lett. 27 1293

    [13]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212]

    [14]

    Schulze C, Lorenz A, Flamm D, Hartung A, Schrter S, Bartelt H, Duparr M 2013 Opt. Express 21 3170

    [15]

    Lars G N, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693

    [16]

    Denis D 2009 Opt. Express 17 22081

    [17]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese) [林桢, 郑斯文, 任国斌, 简水生 2013 物理学报 62 064214]

    [18]

    Faustini L, Martini G 1997 J. Lightwave Technol. 15 671

    [19]

    Wang Q, Farrell G, Feir T 2005 Opt. Express 13 4476

    [20]

    Vassallo C 1985 Opt. Quantum. Electron 17 201

    [21]

    Vassallo C 1985 J. Lightwave Technol. LT-3 416

    [22]

    Li H S, Ren G B, Yin B, Lian Y D, Bai Y L, Jian W, Jian S S 2015 Opt. Common. 352 84

    [23]

    Hagen R 1992 J. Lightwave Technol. 10 543

    [24]

    Ren G B, Lin Z, Zheng SW, Jian S S 2013 Opt. Lett. 38 781

    [25]

    Zhang Z Y, Ren G B, Zhou D A, Wu J L 2014 Laser Opt. Electron. Prog. 51 78 (in Chinese) [张子阳, 任国斌, 周定安, 吴家梁 2014 激光与光电子学进展 51 78]

    [26]

    Schermer R T, Cole J H 2007 IEEE J. Quantum. Electron 43 899

  • [1]

    Desurvire E B 2006 J. Lightwave Technol. 24 4697

    [2]

    Morioka T 2009 Proceedings of the 14th Opto-Electronics and Communications Conference Hong Kong, China, July 13-17, 2009 p1

    [3]

    Yan L S, Liu X, Shieh W 2011 IEEE Photon. J. 3 325

    [4]

    Essiambre R J, Kramer G, Winzer P, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662

    [5]

    Xie Y W, Fu S N, Zhang H L, Tang M, Shen P, Liu D M 2013 Acta Opt. Sin. 9 09060101 (in Chinese) [谢意维, 付松年, 张海亮, 唐明, 沈平, 刘德明 2013 光学学报 9 09060101]

    [6]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [7]

    Marcuse D 1976 J. Opt. Soc. Am. 66 311

    [8]

    Watekar P R, Ju S, Yoon Y S, Lee Y S, Han W T 2008 Opt. Express 16 13545

    [9]

    Watekar P R, Ju S, Htein L, Han W T 2010 Opt. Express 18 13761

    [10]

    Goto Y, Nakajima K, Kurashima T 2012 Proceeding of the 17th Opto-electronics and Communications Conference (OECC) BuSan, July 2-6, 2012 p813

    [11]

    Lin Z 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [林桢2007博士学位论文 (北京:北京交通大学)]

    [12]

    Li H S, Ren G B, Gao Y X, Lian Y D, Cao M, Jian S S 2015 IEEE Photon. Technol. Lett. 27 1293

    [13]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212]

    [14]

    Schulze C, Lorenz A, Flamm D, Hartung A, Schrter S, Bartelt H, Duparr M 2013 Opt. Express 21 3170

    [15]

    Lars G N, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693

    [16]

    Denis D 2009 Opt. Express 17 22081

    [17]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese) [林桢, 郑斯文, 任国斌, 简水生 2013 物理学报 62 064214]

    [18]

    Faustini L, Martini G 1997 J. Lightwave Technol. 15 671

    [19]

    Wang Q, Farrell G, Feir T 2005 Opt. Express 13 4476

    [20]

    Vassallo C 1985 Opt. Quantum. Electron 17 201

    [21]

    Vassallo C 1985 J. Lightwave Technol. LT-3 416

    [22]

    Li H S, Ren G B, Yin B, Lian Y D, Bai Y L, Jian W, Jian S S 2015 Opt. Common. 352 84

    [23]

    Hagen R 1992 J. Lightwave Technol. 10 543

    [24]

    Ren G B, Lin Z, Zheng SW, Jian S S 2013 Opt. Lett. 38 781

    [25]

    Zhang Z Y, Ren G B, Zhou D A, Wu J L 2014 Laser Opt. Electron. Prog. 51 78 (in Chinese) [张子阳, 任国斌, 周定安, 吴家梁 2014 激光与光电子学进展 51 78]

    [26]

    Schermer R T, Cole J H 2007 IEEE J. Quantum. Electron 43 899

  • [1] Hui Zhan-Qiang, Liu Rui-Hua, Gao Li-Ming, Han Dong-Dong, Li Tian-Tian, Gong Jia-Min. Low-loss weak-coupling 6-mode hollow-core negative curvature fiber based on symmetric double-ring nested tube. Acta Physica Sinica, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] Wang Jian, Wu Chong-Qing. Analysis and optimization of few-mode fibers with low differential mode group delay by variational method. Acta Physica Sinica, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [3] Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang. Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss. Acta Physica Sinica, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [4] Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss. Acta Physica Sinica, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [5] Wang Yu-Hao, Wu Bao-Jian, Guo Biao, Wen Feng, Qiu Kun. Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [6] Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [7] Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong. Superimposed long period gratings based mode converter in few-mode fiber. Acta Physica Sinica, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [8] Luo Xue-Xue, Tao Ru-Mao, Liu Zhi-Wei, Shi Chen, Zhang Han-Wei, Wang Xiao-Lin, Zhou Pu, Xu Xiao-Jun. Quasi-static mode instability in few-mode fiber amplifier. Acta Physica Sinica, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [9] Zhang Yan-Jun, Gao Hao-Lei, Fu Xing-Hu, Tian Yong-Sheng. Characterization of Brillouin scattering in a few-mode fiber. Acta Physica Sinica, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [10] Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng. Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores. Acta Physica Sinica, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [11] Jiang Shan-Shan, Liu Yan, Xing Er-Jun. Finite element analysis and design of few mode fiber with low differential mode delay. Acta Physica Sinica, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [12] Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber. Acta Physica Sinica, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] Liao Wen-Ying, Fan Wan-De, Li Yuan, Chen Jun, Bu Fan-Hua, Li Hai-Peng, Wang Xin-Ya, Huang Ding-Ming. Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [14] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [15] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A novel bend-resistant large-mode-area photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [16] Sheng Xin-Zhi, Lou Shu-Qin, Yin Guo-Lu, Lu Wen-Liang, Wang Xin. A high-compatibility low-bending-loss photonic crystal fiber with standard single mode fiber. Acta Physica Sinica, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [17] Yao Shu-Chang, Fu Song-Nian, Zhang Min-Ming, Tang Ming, Shen Ping, Liu De-Ming. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber. Acta Physica Sinica, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [18] Zheng Si-Wen, Lin Zhen, Ren Guo-Bin, Jian Shui-Sheng. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber. Acta Physica Sinica, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [19] Lin Zhen, Zheng Si-Wen, Ren Guo-Bin, Jian Shui-Sheng. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers. Acta Physica Sinica, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [20] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
Metrics
  • Abstract views:  7337
  • PDF Downloads:  404
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2015
  • Accepted Date:  01 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回