Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study

Dai Yue-Hua Pan Zhi-Yong Chen Zhen Wang Fei-Fei Li Ning Jin Bo Li Xiao-Feng

Citation:

Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study

Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • HfO2-based resistive random access memory takes advantage of metal dopants defects in its principle of operation. Then, it is significantly important to study the performance of metal dopants in the formation of conductive filament. Except for the effects of the applied voltage, the orientation and concentration mechanism of the Ag dopants are investigated based on the first principle. First, five possible models of Ag in HfO2 are established in [001], [010], [100], [-111] and [110] directions, in each of which adequate and equal dopants of Ag are ensured. The isosurface plots of partial charge density, formation energy, highest isosurface value and migration barrier of Ag dopants are calculated and compared to investigate the promising formation direction of Ag in the five established orientation systems. The formations of conductive filament are observed in [100], [010], [001] and [-111] directions in the unit cell structure from the isosurface plots of partial charge density. But no filament is formed in [110] direction. And the highest isosurface value of Ag dopant is largest in [-111] direction. This indicates that the most favorable conductive filament formation takes place in this direction. The formation energy of Ag in the different direction is different, and the values in [-111] and [100] direction are minimum and close to each other, which shows that it is easy to form conductive filaments in these two directions. In addition, the smallest migration barrier of Ag in [-111] direction reveals that the [-111] orientation is the optimal conductive path of Ag in HfO2, which will effectively influence the SET voltage, formation voltage and the ON/OFF ratio of the device. Next, based on the results of orientation dependence, four different concentration models (HfAgxO2, x=2, 3, 4, 5) are established along the [-111] crystal orientation. The isosurface plots of partial charge density about those concentration models are compared, showing that the resistive switching phenomenon cannot be observed for the samples deposited in a mixture with less than 4.00 at.% of Ag content (HfAg4O2). The RS behavior is improved with Ag content increasing from 4.00 at. % to 4.95 at.%. However, the formation energy and highest isosurface value are calculated and it is found that the conductive filaments cannot be switched into a stable state when Ag content becomes greater than 4.00 at.%. Then, the total electron density of states and the projected electron density of states are also calculated for the two models. It indirectly shows that the conductive filament is mainly comprised of Ag atoms, rather than Hf atoms or oxygen vacancy. Also, it is not helpful to improve the ON/OFF ratio of the device when the Ag dopant concentration is higher than 4.00 at.%. Therefore, the best doping concentration of Ag is 4.00 at.% and it is more advantageous to change the resistance memory storage features. This work may provide a theoretical guidance for improving the performances of HfO2-based resistive random access memory.
      Corresponding author: Pan Zhi-Yong, 1010888283@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [2]

    Li Y T, L H B, Liu Q, Long S B, Wang M, Xie H W Zhang K W, Huo Z L, Liu M 2013 Nanoscale 5 4785

    [3]

    Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Medeiros-Ribeiro G, Williams R S 2010 Appl. Phys. Lett. 97 232102

    [4]

    Syu Y E, Chang T C, Tsai T M, Hung Y C, Chang K C, Tsai M J, Ming-Jer K, Sze S M 2011 IEEE Electron Device Lett. 32 545

    [5]

    Zhu X J, Su W J, Liu Y W, Hu B L, Pan L, Lu W, Zhang J D, Li R W 2012 Adv. Mater. 24 3941

    [6]

    Zhang M Y, Long S B, Wang G M, Xu X X, Li Y, Liu Q, L H B, Lian X J, Miranda E, Sune J, Liu M 2014 Appl. Phys. Lett. 105 193501

    [7]

    Sun H T, Liu Q, Long S B, L H B, Banerjee W, Liu M 2014 J. Appl. Phys. 116 154509

    [8]

    Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H, Sohn H 2011 Curr. Appl. Phys. 11 e70

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Terabe K, Hasegawa T, Nakayama T 2005 Nature 433 47

    [11]

    Watanabe Y, Bednorz J G, Bietsch A, Gerber C, Widmer D, Beck A 2001 Appl. Phys. Lett. 78 3738

    [12]

    Hickmott T W 1964 J. Appl. Phys. 35 2118

    [13]

    Schindler C, Staikov G, Waser R 2009 Appl. Phys. Lett. 94 072109

    [14]

    Yun J B, Kim S, Seo S, Lee M J, Kim D C 2007 J. Phys. Status Solidi-R 1 280

    [15]

    Jang J, Pan F, Braam K, Subramanian V 2012 Adv. Mater. 24 3573

    [16]

    Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano Lett. 9 1636

    [17]

    Wang Y, Liu Q, Long S, Wang W, Wang Q 2010 Nanotech. 21 045202

    [18]

    Sun H T, Liu Q, Li C F, Long S B, L H B, Bi C, Huo Z L, Li L, Liu M 2014 Adv. Funct. Mater. 24 5679

    [19]

    Sleiman A, Sayers P W, Mabrook M F 2013 J. Appl. Phys 113 164506

    [20]

    Xiao B, Gu T, Tada T, Watanabe S 2014 J. Appl. Phys. 115 34503

    [21]

    Lu J L, Luo J, Zhao H P, Yang J, Jiang X W, Liu Q, Li X F, Dai Y H 2014 J. Semicond. 35 013001

    [22]

    Pandey S C, Meade R, Sandhu G S 2015 J. Appl. Phys. 117 054504

    [23]

    Li J C, Hou X Y, Cao Q 2014 J. Appl. Phys. 115 164507

    [24]

    Valov I, Staikov G 2013 J. Solid State Electrochem. 17 365

    [25]

    Liu Q, Long S B, L H B, Wang W, Niu J B, Huo Z L, Chen J N, Liu M 2010 Acs Nano 4 6162

    [26]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732

    [27]

    Hann R E, Suitch P R, Pentecost J L 1985 J. Am. Ceram. Soc. 68 C-285

    [28]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Delley B 2000 J. Chem. Phys. 113 7756

    [32]

    Liu J C, Zhang X M, Chen M A, Tang J G, Liu S D 2010 Acta Phys. Sin. 59 5641 (in Chinese) [刘建才, 张新明, 陈明安, 唐建国, 刘胜胆 2010 物理学报 59 5641]

    [33]

    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J 2003 Comp. Mater. Sci. 28 250

    [34]

    Zhou M Y, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 J. Semicond. 33 072002

  • [1]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [2]

    Li Y T, L H B, Liu Q, Long S B, Wang M, Xie H W Zhang K W, Huo Z L, Liu M 2013 Nanoscale 5 4785

    [3]

    Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Medeiros-Ribeiro G, Williams R S 2010 Appl. Phys. Lett. 97 232102

    [4]

    Syu Y E, Chang T C, Tsai T M, Hung Y C, Chang K C, Tsai M J, Ming-Jer K, Sze S M 2011 IEEE Electron Device Lett. 32 545

    [5]

    Zhu X J, Su W J, Liu Y W, Hu B L, Pan L, Lu W, Zhang J D, Li R W 2012 Adv. Mater. 24 3941

    [6]

    Zhang M Y, Long S B, Wang G M, Xu X X, Li Y, Liu Q, L H B, Lian X J, Miranda E, Sune J, Liu M 2014 Appl. Phys. Lett. 105 193501

    [7]

    Sun H T, Liu Q, Long S B, L H B, Banerjee W, Liu M 2014 J. Appl. Phys. 116 154509

    [8]

    Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H, Sohn H 2011 Curr. Appl. Phys. 11 e70

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Terabe K, Hasegawa T, Nakayama T 2005 Nature 433 47

    [11]

    Watanabe Y, Bednorz J G, Bietsch A, Gerber C, Widmer D, Beck A 2001 Appl. Phys. Lett. 78 3738

    [12]

    Hickmott T W 1964 J. Appl. Phys. 35 2118

    [13]

    Schindler C, Staikov G, Waser R 2009 Appl. Phys. Lett. 94 072109

    [14]

    Yun J B, Kim S, Seo S, Lee M J, Kim D C 2007 J. Phys. Status Solidi-R 1 280

    [15]

    Jang J, Pan F, Braam K, Subramanian V 2012 Adv. Mater. 24 3573

    [16]

    Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano Lett. 9 1636

    [17]

    Wang Y, Liu Q, Long S, Wang W, Wang Q 2010 Nanotech. 21 045202

    [18]

    Sun H T, Liu Q, Li C F, Long S B, L H B, Bi C, Huo Z L, Li L, Liu M 2014 Adv. Funct. Mater. 24 5679

    [19]

    Sleiman A, Sayers P W, Mabrook M F 2013 J. Appl. Phys 113 164506

    [20]

    Xiao B, Gu T, Tada T, Watanabe S 2014 J. Appl. Phys. 115 34503

    [21]

    Lu J L, Luo J, Zhao H P, Yang J, Jiang X W, Liu Q, Li X F, Dai Y H 2014 J. Semicond. 35 013001

    [22]

    Pandey S C, Meade R, Sandhu G S 2015 J. Appl. Phys. 117 054504

    [23]

    Li J C, Hou X Y, Cao Q 2014 J. Appl. Phys. 115 164507

    [24]

    Valov I, Staikov G 2013 J. Solid State Electrochem. 17 365

    [25]

    Liu Q, Long S B, L H B, Wang W, Niu J B, Huo Z L, Chen J N, Liu M 2010 Acs Nano 4 6162

    [26]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732

    [27]

    Hann R E, Suitch P R, Pentecost J L 1985 J. Am. Ceram. Soc. 68 C-285

    [28]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Delley B 2000 J. Chem. Phys. 113 7756

    [32]

    Liu J C, Zhang X M, Chen M A, Tang J G, Liu S D 2010 Acta Phys. Sin. 59 5641 (in Chinese) [刘建才, 张新明, 陈明安, 唐建国, 刘胜胆 2010 物理学报 59 5641]

    [33]

    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J 2003 Comp. Mater. Sci. 28 250

    [34]

    Zhou M Y, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 J. Semicond. 33 072002

  • [1] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [2] Zhou Zheng, Huang Peng, Kang Jin-Feng. Non-volatile memory based in-memory computing technology. Acta Physica Sinica, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [3] Dai Guang-Zhen, Jiang Yong-Zhao, Ni Tian-Ming, Liu Xin, Lu Lin, Liu Qi. First principles study of effect of vaiable component Al on HfO2 resistance. Acta Physica Sinica, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [4] Zhang Zhi-Chao, Wang Fang, Wu Shi-Jian, Li Yi, Mi Wei, Zhao Jin-Shi, Zhang Kai-Liang. Influneces of different oxygen partial pressures on switching properties of Ni/HfOx/TiN resistive switching devices. Acta Physica Sinica, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [5] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [6] Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu. Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory. Acta Physica Sinica, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [7] Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang. Effect of Mo doping concentration on the physical properties of ZnO studied by first principles. Acta Physica Sinica, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [8] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [9] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [10] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [11] Chen Ran, Zhou Li-Wei, Wang Jian-Yun, Chen Chang-Jun, Shao Xing-Long, Jiang Hao, Zhang Kai-Liang, Lü Lian-Rong, Zhao Jin-Shi. Multilevel switching mechanism for resistive random access memory based on Cu/SiOx/Al structure. Acta Physica Sinica, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [12] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effect of high Mn doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [13] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [14] Li Wan-Jun, Fang Liang, Qin Guo-Ping, Ruan Hai-Bo, Kong Chun-Yang, Zheng Ji, Bian Ping, Xu Qing, Wu Fang. First-principles study of Ag-N dual-doped p-type ZnO. Acta Physica Sinica, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [15] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effects of high Al doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [16] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [17] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [18] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [19] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun. First-principles study on the effects of the concentration of Al-2N high codoping on the electric conducting performance of ZnO. Acta Physica Sinica, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [20] Hou Qing-Yu, Zhang Yue, Zhang Tao. First-principles research on the effect of high oxygen vacancy concentration in anatase TiO2 on Mott phase transition, absorption spectrum Einstein shift and life_time of electrons. Acta Physica Sinica, 2008, 57(3): 1862-1866. doi: 10.7498/aps.57.1862
Metrics
  • Abstract views:  5404
  • PDF Downloads:  289
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2015
  • Accepted Date:  21 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回